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Para Mamá y Papá,





"The task of a poet is not to tell what has
happened, but what might happen, and
what is possible according to probability
or necessity."

Aristotle, Poetics.
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Abstract

Assessing the time dependence of multivariate extremes
for heavy rainfall modeling

Nowadays, it is common in environmental sciences to use extreme value theory to assess the
risk of natural hazards. In hydrology, rainfall amounts reach high-intensity levels frequently, which
suggests modeling heavy rainfall from a heavy-tailed distribution. In this setting, risk management
is crucial for preventing the outrageous economic and societal consequences of flooding or land-
sliding. Furthermore, climate dynamics can produce extreme weather lasting numerous days over
the same region. However, even in the stationary setting, practitioners often disregard the temporal
memories of multivariate extremes. This thesis is motivated by the case study of fall heavy rainfall
amounts from a station’s network in France. Its main goal is twofold. First, it proposes a theoretical
framework for modeling time dependencies of multivariate stationary regularly varying time series.
Second, it presents new statistical methodologies to thoughtfully aggregate extreme recordings in
space and time.

To achieve this plan, we consider consecutive observations, or blocks, and analyze their extreme
behavior as their `p-norm reaches high levels, for p > 0. This consideration leads to the theory
of p-clusters, which model extremal `p-blocks. In the case p = ∞, we recover the classical cluster
(of exceedances). For p < ∞, we built on large deviations principles for heavy-tailed observations.
Then, we study in depth two setups where p-cluster theory appears valuable. First, we design disjoint
blocks estimators to infer statistics of p-clusters, e.g., the extremal index. Actually, p-clusters are
linked through a change of norms functional. This relationship opens the road for improving cluster
inference since we can now estimate the same quantity with different choices of p. We show cluster
inference based on p <∞ is advantageous compared to the classical p =∞ strategy in terms of bias.
Second, we propose the stable sums method for high return levels inference. This method enhances
marginal inference by aggregating extremes in space and time using the `α-norm, where α > 0 is the
(tail) index of the series. In simulation, it appears to be robust for dealing with temporal memories
and it is justified by the α-cluster theory.

Keywords1: Extreme value theory, regularly varying time series, large deviations, environmental
time series
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Résumé

Analyse multivariée de la dépendance temporelle des extrêmes
pour la modélisation des précipitations sévères

Il est commun dans les sciences de l’environnement d’utiliser la théorie des valeurs extrêmes
pour évaluer le risque des dangers naturels. En hydrologie, les précipitations atteignent fréquem-
ment des hauts niveaux d’intensité, ce qui suggère de modéliser les pluies sévères à l’aide d’une
distribution à queue lourde. Dans ce contexte, la gestion du risque est cruciale pour prévenir des
conséquences économiques et sociétales majeures telles que des inondations ou des glissements de
terrain. Par ailleurs, les dynamiques du climat peuvent produire des conditions météorologiques
extrêmes pendant plusieurs jours sur la même région. Cependant, dans le cadre stationnaire, les
praticiens négligent souvent les dépendances temporelles des extrêmes multivariées. Cette thèse pro-
pose un cadre théorique pour la modélisation des dépendances temporelles des séries chronologiques
stationnaires à variation régulière et des nouvelles méthodologies statistiques pour agréger les ob-
servations spatiotemporelles des extrêmes. Plus précisement, nous développons l’étude de cas sur
les précipitations extrêmes d’un réseau météo en France.

Nous considérons des observations consécutives, ou blocs, et analysons leur comportement
lorsque leur `p-norme atteint des niveaux extrêmes, pour p > 0. Cette approche conduit à la
théorie des p-clusters qui sert à modéliser les `p-blocs extrémaux. Dans le cas p =∞, nous retrou-
vons la définition classique du cluster extrémal. Pour p <∞, nous nous appuyons sur les principes
de grandes déviations pour les observations à queue lourde. Nous approfondissons sur deux cas où
la théorie des p-clusters semble pratique. Premièrement, nous proposons des estimateurs de blocs
disjoints pour estimer des statistiques des p-clusters, e.g., l’indice extrémal. De plus, nous retraçons
les p-clusters par une fonctionelle de changement de norme. Cette relation ouvre la voie à une
possible amélioration de l’inférence des clusters puisque nous pouvons maintenant estimer la même
quantité avec des choix de p différents. Nous montrons que l’inférence des clusters basée sur p <∞
est avantageuse par rapport à la stratégie classique p =∞ concernant le biais. Deuxièmement, nous
proposons une méthode pour l’inférence des niveaux de retour extrémaux. Cette méthode améliore
l’inférence marginale en agrégeant les extrêmes dans l’espace et dans le temps à l’aide de la norme
`α, où α > 0 est l’indice (de queue) de la série. En simulation, cette méthode paraît robuste pour
traiter les dépendances temporelles et se justifie par la théorie des α-cluster.

Mots clés2: Théorie des valeurs extrêmes, séries temporelles à variation régulière, grandes dévi-
ations, séries temporelles environnementales
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1.1 Extreme value theory

Extreme value theory (EVT) is the area of statistics studying rare events. This domain calls
the attention of many disciplines where risk assessment is necessary, and this feature encapsulates
its realm of applications. Some examples are finance, insurance, network traffic, hydrology, geology,
metallurgy, and electronics [59, 34, 12, 143]. Among all applications, their common point is their
need to quantify how frequently unlikely events occur for designing prevention plans. Risk man-
agement of extremes has both a societal and an economic impact. Its ultimate goal is to gauge the
magnitude of hazards and infer coverage levels for protection against disasters such as flooding, de-
bris flows, land slides, heatwaves, financial crashes, high tides, network traffic crashes, etc. Overall,
the techniques in extreme value statistics provide valuable information for defining risk policies and
infrastructure plans attempting to reduce the ruinous consequences of environmental, industrial or
economic disasters.

(EVT) groups the main statistical tools and methodologies for inferring the probability that an
unusual phenomenon will happen. Naturally, this task entails significant statistical challenges as,
by definition, rare events are scarce, and in practice, we rarely or never observe them beforehand.
To overcome this statistical issue, both practitioners and theoreticians rely on probability theory
and asymptotic analysis. The (EVT) primary goal is to extrapolate beyond observed data by
modeling high records, and then to evaluate the uncertainties of this approximation. Typically,
we have access to a sample of observations drawn under the same random mechanism. In this
stationary setting, rare events lie on the tail of the underlying probability distribution, and we
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aim to infer/extrapolate the probability tail from the empirical observations. Stating the problem
differently, we seek to model and infer large deviations from the distribution’s median.

To list a few fields intersecting extreme value theory, we mention asymptotic development,
theory of regular variation, measure convergence, and empirical processes theory. Aside from the
asymptotic and probabilistic results, we need sharp statistical methodologies to infer the unusual.
Commonly, we start by choosing among all observed values those relevant to model the tail prob-
ability. As expected, not all experimental recordings are helpful to extrapolate the tail. Once
large values are selected, (EVT) proposes a rigorous theoretical background and various statisti-
cal methodologies for the purpose of tail inference. Textbooks discuss how to model univariate
stationary data with temporal memories [34, 12, 59]. Also, assessing the risk of extremes from a
spatial grid or network co-occurring is possible from spatial considerations modeling d-dimensional
extremes [12, 80, 143]. However, practitioners often assume i.i.d. data for multivariate inference.
I consider extremal temporal dependence in a stationary multivariate setting. I present below the
case study of fall daily rainfall levels from a network of weather stations in France to illustrate my
main motivation.

1.2 Case study of daily rainfall measurements in France

This thesis aims to develop a solid framework for assessing multivariate extremal temporal de-
pendencies, and derive tactful inference strategies in the stationary setting. One main driver of this
thesis is the data set of daily precipitation amounts from a France’s network of weather stations. I
consider daily rainfall records from 1975 to 2015 obtained from Météo France. Concerning station-
arity, I focus on fall observations (September, October, and November) including both wet and dry
days. By choosing different regions in France, I can contrast our forthcoming new methodologies on
different climates. I have picked three sites featuring oceanic weather in the northwest (Brest, Lan-
veoc, and Quimper), three sites from the mediterranean in the south (Hyeres, Bormes-les-Mimosas,
and Le Luc), and three continental sites in the northeast (Metz, Nancy, and Roville). Figure 1.1
indicates the three chosen regions. Concerning the meteorological dynamics, storms/fronts entail
daily high rainfall levels recorded simultaneously over multiple sites and possibly at numerous time
lags in a short period. Consequently, the underlying extremal event, let’s say a storm, has both a
spatial and temporal coverage.

To illustrate this point, we can see in Figure 1.2 that within the same region, fall rainfall records
attain high levels with similar intensities. In addition, rainfall in the south is heavier than in the
northwest and northeast regions. Also, extreme precipitations are often recorded simultaneously at
nearby stations from the same region. As explained, the weather within a region is typically driven
by the same meteorological dynamic, let’s say, a convective storm, which produces high rainfall
levels co-occurring at close locations with similar intensity. Moreover, the extremal dependencies
in time are summarized by the temporal extremogram in1 [44]. The empirical estimates are shown
in Figure 1.3, and indicate that consecutive heavy daily rainfall amounts can not be considered

1The temporal extremogram for heavy-tailed series is defined over time lags by t 7→ limx→+∞ P(Xt > x |X0 > x).
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Figure 1.1: Map of France with localization of the weather stations considered in the analysis.

as i.i.d. Hence, the distance proximity of stations from the same region justifies addressing time
dependence in a multivariate setting, and thus the main challenge in this framework is how to
aggregate information about extremes in space and time.

Aside from the temporal and spatial dependencies, the third feature I want to highlight from
this data set is its heavy-tailed nature. Daily rainfall take zero values on dry days, or low values on
usual days, but exhibits large deviations from its median with extreme weather conditions. Then,
as climate scientists and hydrology experts agree, the significant intensity levels reached by heavy
rainfall are appropriately modeled with heavy-tailed distributions; cf. [102, 37, 126]. More precisely,
in this stationary setting, I will model daily heavy rainfall at each station, denoted by X, using
a survival function with polynomial decay, i.e., P(X > x) = F (x) = x−α`(x), where α > 0 is a
(tail) index and x 7→ `(x) is a positive function verifying, for all t > 0, limx→+∞ `(tx)/`(x) = 1.
In this heavy-tailed setting, my goal is to infer the extremal properties of the general mechanism
driving heavy rainfall amounts while assessing uncertainties. For example, I would like to address
high return level (quantile) estimation. My main claim is that integrating the temporal memories
and spatial ties should enhance inference of confidence intervals. Indeed, uncertainties assessment is
highly important for this case study. Erroneous heavy rainfall risk evaluation can have a considerably
negative socio-economical impact as rare events are of significant magnitude in terms of flooding,
debris flows or landslides.

Chapter 4 analyzes this data set with the new forthcoming methodologies. My goal in Chapter 4
is to compute high quantiles of the distribution of heavy rainfall in a stationary setting. The reason
to introduce this case study here, is to contextualize the main objectives of this thesis that I now
state below. Of course, this data set motivates the analysis, but the new methodologies cover further
contexts based on stationary multivariate heavy-tailed time series.
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Figure 1.2: Scatter plots of fall daily rainfall in France from 1976 to 2015. The top, middle, and
bottom panels refer to three climatological regions: continental (northwest), oceanic (west), and
mediterranean (south), respectively. Simultaneous exceedances of the 95-th order statistic of the
sample of daily maxima of a region are in black.
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Figure 1.3: Empirical temporal extremogram of the 95-th order statistic of fall daily maximum
rainfall record within regions in France from 1976 to 2015. The first, middle and last correspond
to three climatological regions as in Figure 1.2. As a baseline, the extremogram takes the value
pointed by the dotted line on independent time lags.
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1.3 Goals of this thesis.

Consider (Xt) to be a multivariate stationary time series with heavy-tailed behavior; see Ap-
pendix B. In this setting, the objectives of this thesis are twofold. First, it aims to establish a
theoretical framework for modeling extremal temporal dependence. Second, it aims to investigate
statistical methods for multivariate extremes that account for the time dependencies. More precisely,
in what follows I will address the following questions written in (Quest. 1-4).

Quest. 1. How can we model an extreme episode lasting for several time units in a multivariate setting?

Quest. 2. How can we detect extreme episodes from all observations in a sample-based approach?

Quest. 3. How can we infer the spatiotemporal features of extreme episodes?

Quest. 4. How can we compute high return levels and quantify its uncertainties while integrating the
time and space dependencies?

1.4 Outline of the thesis

This thesis aims to assess the extremal time dependence of multivariate heavy-tailed extremes.
To do so, I will address questions (Quest. 1-4) as follows. In the context of stationary heavy-tailed
time series, extreme episodes can happen as short periods with numerous high recordings. Chapter 2
presents new large deviation principles of consecutive observations, or blocks, with a large `p-norm.
It relies on extreme value theory and large deviations of sums of heavy-tailed time series. The
asymptotics of extremal `p-blocks give a rigorous definition of p-clusters taking values in `p. Taking
advantage of the p-clusters theory, Chapter 2 suggests to capture the characteristics of short periods
with extremal behavior through p-clusters to answer (Quest. 1). The second part of Chapter 2 and
Chapters 3, 4, 5, detail two applications of the new large deviation principles of extremal `p-blocks
and p-cluster theory. For the first application, Chapter 2 develops an inference methodology based
on extremal `p-blocks to estimate p-cluster features. It proposes new consistent disjoint blocks
estimators for cluster inference which address (Quest. 2-3). Asymptotic normality of p-cluster
blocks estimators is proven in Chapter 5. Chapter 3 will revisit the extremal index introduced in
[109, 110], which can be interpreted as a summary of the extremal time dependencies. The extremal
index has a reinterpretation using the α-cluster, where α > 0 is the (tail) index. Chapter 3 studies
cluster-based extremal index inference built on extremal `α-blocks, which further illustrates my
contribution to (Quest. 3). Chapter 4 shows an application of the new large deviation principles
to high quantile inference for heavy-tailed spatiotemporal data sets, and addresses in depth (Quest.
4). It presents the stable sums method for high return levels inference, which proposes to aggregate
spatiotemporal extremes with the `α-norm and is justified by the α-cluster theory. Finally, Chapter 4
computes return levels for the case study of daily rainfall previously introduced in Section 1.2.

In the remaining of this chapter, I outline my contributions and publications, and sketch how
they tackle the queries in (Quest. 1-4). Finally, appendices A and B provide a toolbox of back-
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ground results needed for this thesis. Appendix A analyzes heavy daily rainfall in France, from
the data set introduced Section 1.2, with classical tools in extremes. It also aims to underline the
limitations of the most common practices. To simultaneously model the spatiotemporal aspects of
our data, Appendix B presents a state-of-the-art framework of stationary heavy-tailed time series
and complements the discussion on the upcoming new results and methodologies.

1.5 Personal contributions

1.5.1 Notation

The main theoretical contribution of this thesis is modeling extremal `p–blocks, i.e., short periods
with large `p-norm. Let’s start by recalling the definition of the sequential space `p. For p ∈ (0,+∞],
consider the p-modulus ‖ · ‖p : (Rd)Z → [0,+∞] defined by

‖xt‖p = (
∑

t∈Z|xt|
p)1/p, (1.5.1)

and consider the space (`p, dp) of sequences with finite p-modulus, where dp is the metric induced
by the p-modulus. If p = ∞, then ‖ · ‖∞ is the supremum norm. The p−modulus is a norm if
p ∈ [1,+∞), and, abusing notation, we refer to ‖ · ‖p as the `p-norm for all p ∈ (0,+∞]. The
`p-norms are not equivalent, and they satisfy

‖ · ‖p ≥ ‖ · ‖p′ ≥ ‖ · ‖∞ ,

for all p, p′ > 0 with p < p′. The supremum norm of a fixed sequence is also the monotone limit as
p→ +∞ of its `p-norm.

More generally, we write vectors x ∈ Rd in bold, Rd-valued time series as (xt) ∈ (Rd)Z. We
sometimes use the notation x[a,b], or (xt)t=a,...,b, to write the vector (xa, . . . ,xb) ∈ (Rd)b−a+1, for
a, b ∈ Z, a ≤ b. For sequences (xn), (yn) ∈ (R)Z, the asymptotic relation (xn) ∼ (yn), as n→ +∞, is
interpreted as xn/yn → 1, as n→ +∞. We write random vectors in capital letter as X takes values
in ∈ Rd. We denote weak convergence of probability measures by w−→, convergence in distribution of
random processes by d−→, convergence in probability of random variables by P−→. For random objects,
almost sure relations are abbreviated as a.s.. Independent identically distributed random vectors is
abbreviated by i.i.d.

1.5.2 Heavy-tailed stationary time series

Consider (Xt) to be a stationary time series taking values in Rd, endowed with a norm | · |.
Assume it is heavy-tailed in the following sense: there exists α > 0, and a time series (Θt), satisfying
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|Θ0| = 1 a.s., such that for all y > 0, h = 0, 1, . . . ,

P(|X0| > yx,Xt=±0,1,...,h/|X0| ∈ · | |X0| > x)
w−→ y−αP(Θt=±0,1,...,h ∈ ·),

x→ +∞. (1.5.2)

We say in this case that (Xt) is regularly varying with (tail) index α > 0 and spectral tail measure
(Θt); see Appendix B.5. The time series (Θt) captures space and time extremal features over finite
windows of time. To capture the full duration of spatiotemporal extremes, my goal is to let h→ +∞
in (1.5.2) simultaneously as x → +∞. My aim is to model the extremal features of consecutive
observations, or blocks, defined by

Xt=1,...,n = X[1,n],

as n → +∞. To pursue this approach, we must embed the blocks X[1,n] into a suitable sequential
space. I will study the extremal features of blocks in the space (`p, dp).

1.5.3 Large deviations of extremal `p-blocks

To model extremal attributes of blocks X[1,n] in (`p, dp), as n → +∞, we must define what
extreme means in (`p, dp). Naturally, we say a block is extreme if its `p-norm is large. The main
challenge then is to find suitable assumptions such that P(X[1,n]/xn ∈ · | ‖X[1,n]‖p > xn) admits a
limit, where (xn) is a suitable sequence satisfying P(‖X[1,n]‖p > xn)→ 0, as n→ +∞. In this case,
we say (xn) is a extremal sequence for X[1,n] ∈ (`p, dp). In Chapter 2, Theorem 2.2.1 introduces
anti-clustering and vanishing small values conditions: AC,CSp, driving the sequence (xn), such
that, for y > 0,

P(‖X[1,n]‖p > yxn,X[1,n]/‖X[1,n]‖p ∈ A | ‖X[1,n]‖p > xn)
w−→ y−αP(Q(p) ∈ A),

n→ +∞. (1.5.3)

where Q(p) takes values in `p, ‖Q(p)‖p = 1 a.s., this limit holds for suitable shift-invariant continuity
sets A ⊂ (`p, dp), and nP(|X0| > xn) → 0. We say in this case that the time series (Xt) admits
a p-cluster Q(p). We stress the close similarity between equations (1.5.3) and (1.5.2). Also, notice
sum-type functionals and norms are examples of the shift-invariant sets we can consider in (1.5.3).

We call the limit in (1.5.3) a large deviation principle of extremal `p-blocks. Indeed, for p <∞,
notice that if (1.5.3) holds and (xn) is a sequence such that P(‖X[1,n]‖p > xn) → 0, as n → +∞,
then necessarily

∑n
t=1 |Xt/xn|p = ‖X[1,n]/xn‖pp

P−→ 0, n→ +∞. (1.5.4)

The left-hand side of Equation (1.5.4) is a sum of regularly varying increments |Xt|p with (tail) index
α/p. Therefore, we can study the large deviations of this sum under the classical large deviation’s
literature appealing to the work in A.V. and S.V. Nagaev [125, 124] and Cline and Hsing [33], for
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i.i.d. time series, and Mikosch and Wintenberger [121, 123], for dependent heavy-tailed time series.
Moreover, notice (1.5.4) holds if the sequence (xn) satisfies nE[|X1/xn

1|p] → 0, as n → +∞, with
the truncation notation where x1 = x11(|x| ≤ 1). This last relation points straightforwardly to one
of the main restrictions we impose on (xn). We assume n/xp∧(α−κ)

n → 0, for some κ > 0, thus
nE[|X1/xn

1|p]→ 0, as n→ +∞, which yields (1.5.4). This last relation follows by the Karamata’s
Theorem [100].

To sum up, Chapter 2 gives a theoretical framework to model extremal `p-blocks. The theory
of p-clusters, which arises from Equation (1.5.3) is also developed therein. Formalizing the limit
in (1.5.3) in Theorem 2.2.1 is my main contribution to (Quest. 1). Actually, extremal `∞–blocks
were previously considered in [40, 10, 9], and lead to the theory of clusters (of exceedances), which
coincide with our ∞-cluster defined by letting p =∞ in Equation (1.5.3). From a theoretical point
of view, it has been already challenging to formalize the definition of clusters (of exceedances); see
[65, 153, 154, 10, 9], and references there in. However, the underlying idea of p-clusters has proven
to be a very useful tool. For example, the considerations in [40] show how to model blocks X[0,n]/an

using the ∞-cluster, where (an) are moderate levels satisfying P(‖X[1,n]‖∞ > an) → c, for some
positive constant c > 0, such that nP(|X0| > an) → 1, as n → +∞. Furthermore, [40] used then
the limit representation of X[1,n]/an, as n → +∞, to state a central limit theory for heavy-tailed
stationary time series.

Actually, we claim that to model blocks X[1,n]/an, with nP(|X0| > an) → 1, as n → +∞, it is
advantageous to use the α-cluster rather than the ∞-cluster’s approach for one main reason. The
∞-cluster, defined with respect to the `∞-norm, is in tight correspondance with the extremal index
of the sequence (Xt), that we denote θ|X|; see [109, 110]. Instead, using the α-cluster we can remove
this parameter from the limit representation ofX[1,n]/an, as n→ +∞, in the following way. Arguing
as in [40], we model X[1,n]/an as a concatenation of independent extreme episodes, or p-clusters,
such that (an) are moderate levels satisfying nP(|X0| > an) → 1, as n → +∞. Roughly speaking,
we introduce an intermediate integer sequence (bn), we denote mn = bn/bnc, and we define disjoint
blocks as

X[1,bn]︸ ︷︷ ︸
:=B1

, X[bn+1,2bn]︸ ︷︷ ︸
:=B2

, . . . , X[n−bn+1,n]︸ ︷︷ ︸
:=Bmn

. (1.5.5)

satisfying xbn = an, thus n/bn → +∞, as n → +∞. Then, under sufficient mixing conditions
like A(xbn); see Appendix B.4, the subsample of disjoint blocks (Bt/xbn)t=1,...,mn defined from
Equation (1.5.5), is asymptotically independent, as n → +∞. This last observation yields the
modeling strategy in [40] such that we model observations X[1,n]/an as a concatenation of inde-
pendent p-clusters, as n → +∞. However, in this setting we must keep track of two things to
trace the limit representation of X[1,n]/an. First, we must model the limit of extremal `p-blocks:
B1/xbn = X[1,bn]/xbn , which we do using the p-clusters, and second, we care about the probability
of hitting a p-cluster given by P(‖X[1,bn]‖p > xbn), as n → +∞. This last probability is described
below by the asymptotics in (1.5.6), for p =∞, and in (1.5.7), for p = α.
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For p =∞, we mentioned that the∞-cluster is linked to the extremal index θ|X|. Actually, note
the extremal index exists for time series with short-range memories, and that it can be interpreted
as a summary statistic of the extremal time dependencies as follows. Under classical anti-clustering
conditions like AC in Theorem 2.2.1, preventing the long-range dependence of extremes, the ex-
tremal index satisfies θ|X| ∈ (0, 1] and

P(‖X[1,bn]‖∞ > xbn) ∼ θ|X| bn P(|X0| > xbn), n→ +∞. (1.5.6)

where (xn) is as in (1.5.3). Instead, for our `α-norm approach, we show in Theorem 2.2.1 that, for
p = α, under anti-clustering and vanishing small values conditions AC, CSα, stated therein, the
following relation holds

P(‖X[1,bn]‖α > xbn) ∼ bn P(|X0| > xbn), n→ +∞. (1.5.7)

Both, conditions AC, CSα, in Theorem 2.2.1 typically hold for short-range memory time series.
Condition CSα is tailored for neglecting the small values of sums in extreme blocks. In Chapter 2,
Section 2.5 discusses these conditions thoroughly. Recall our goal to model X[1,n]/an as a concate-
nation of independent p-cluster. In this case, the aforementioned modeling strategy based on p = α

only relies on the α-cluster due to Equation (1.5.7). Indeed, both (1.5.6) and (1.5.7) compare the
series behavior with the i.i.d. case. Roughly, we record extremal `α-blocks with the same probability
for short-range memory series than we do for i.i.d. times series. This is not the case for extremal
`∞-blocks with θ|X| < 1. We interpret Equation (1.5.7) as a robust feature of the time series with
respect to time dependencies.

Then, continuing the argument as in [40], we show in Theorem 3.3.8 the following empirical
point process convergence towards a cluster Poisson process

Nn =
n∑
t=1

εXt/an
d−→ N =

∞∑
i=1

∑
t∈Z

ε
ΓiQ

(α)
t,i

, n→ +∞. (1.5.8)

where (an) is a sequence of moderate levels satisfying nP(|X0| > an)→ 1, (Γi)i=1,...,∞, (Q
(α)
t,i )i=1,...,∞

are both i.i.d. sequences, independent between them, (Γi) are the points of a homogenous Poisson
point process on (0,∞) with intensity measure d(−y−α), and (Q

(α)
t,1 ) is distributed as the α-cluster.

Reviewing this approach, we see from (1.5.8) that we can fully identify the cluster component in
the limit in terms of the α-cluster. We refer to Appendix B.6 for further discussion and references.
Moreover, we mentioned that modeling the asymptotics of blocks X[1,n]/an can be helpful to show
further asymptotic results. Indeed, by modeling blocks X[1,n]/an through α-clusters we can prove
the central limit theorem of partial sums:

∑n
t=1 Xt/an, towards a stable distribution, as n→ +∞.

We state central limit theory of partial sums in Proposition 2.4.4, for α ∈ (0, 1) ∪ (1, 2), and in
Theorem 4.7.1, for α = 1.
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1.5.4 Statistical applications

We explained in Section 1.5.3 that for modeling purposes, the α-cluster is a good candidate for
tracking the asymptotics of moderate observations. In this section, we argue that the strategy of
considering extremal `α–blocks opens a new road for improving inference procedures for heavy-tailed
stationary time series. For inference purposes, consider observations X[1,n] and let (bn) be again an
intermediate integer sequence such that bn → +∞ and n/bn → +∞, as n → +∞. In a statistical
setting, our main motivation for studying extremal `p–blocks, with p <∞, is the following. Notice
that as p decreases, the p-norms increase, and thus the probability of recording an extremal `p–block
increase also. Actually, under the assumptions of Theorem 2.2.1 for p, there exists a non-increasing
function p 7→ c(p), for p > 0, such that

P(‖X[1,bn]‖p > xbn) ∼ c(p) bn P(|X0| > xbn), n→ +∞, (1.5.9)

where nP(|X0| > xn)→ 0, and p 7→ c(p) satisfies

1 = c(α) ≥ c(p) ≥ c(∞) = θ|X|; (1.5.10)

see (1.5.6), (1.5.7). Hence, c(p) summarizes the temporal memories of the time series for the `p-
norm when compared to the i.i.d. setting. Actually, an i.i.d. sequence has extremal index one.
Hence, from (1.5.9) and (1.5.10), we read that the number of extremal `∞-blocks available in a
sample-based scenario is proportional to the extremal index, compared to the i.i.d. case. Instead,
the extremal `α-blocks happen with the same probability than in the i.i.d. case. For this reason,
the `α-blocks seem to be a robust solution for evaluating spatiotemporal extremes.

We develop statistical methodologies to enhance both cluster inference and marginal infer-
ence. Concerning cluster inference, note that Theorem 2.2.1 holds for p > α solely under AC

and nP(|X0| > xn) → 0 such that this resctrictions determine the asymptotics of (xn) . Equa-
tion (1.5.9) indicates that fewer extremal `∞-blocks are available in a sample compared to the
number of extremal `p-blocks, with p < ∞. Then, estimation of cluster features using extremal
`p-blocks should improve inference as we take p ↓ α. For p = α, we also require condition CSα but
in this case c(α) = 1. This is advantageous since now the proportion of extremal `α blocks remains
constant compared to the i.i.d. case, thus the estimation procedure is robust to time dependencies.
We formalize this argument in the second part of Chapter 2 and further illustrate the advantages
of `p-cluster-based inference in Chapter 3, for p < ∞. We detail briefly our main contributions to
p-cluster inference in Section 1.5.5 below. Concerning marginal inference, our goal is to estimate
features of the distribution of X1. In this case, the relationship between the extremal `∞-blocks
and the extremal index also troubles the implementation of classical statistical methods in (EVT),
tailored for i.i.d. observations. For example, the common block-maxima and exceedances approach
for high quantile inference, built on Pareto models, must be corrected when applied to stationary
time-dependent observations to obtain consistent estimates [60, 63]. Typically, estimating the ex-
tremal index is a necessary additional step to correct the asymptotics; cf. Appendix A. Instead, for
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high quantile inference, we can extrapolate the distribution of X1 using (1.5.7). The main idea is
to aggregate short periods through the `α-norm and then model the α-power sums from a stable
distribution. This seems to be a robust solution to account for the temporal memories. We will
present our stable sums algorithm for marginal inference in Chapter 4. We explain in short the
underlying idea in Section 1.5.6 below.

In what follows, it will be convenient to relate the p-clusters among them to compare the
inference procedures tuned with different values of p. Recall the spectral tail process (Θt) in (1.5.2).
In Proposition 2.3.1 we state that, provided ‖Θ‖α + ‖Θ‖p < +∞ a.s., and E[‖Θ‖αp /‖Θ‖αα] < +∞,
then p-clusters can be related as follows

P(Q(p) ∈ ·) = c(p)−1E
[‖Θ‖αp
‖Θ‖αα

11(Θ/‖Θ‖p ∈ ·)
]
, (1.5.11)

such that ‖Q(p)‖p = 1 a.s., c(p) coincides with (1.5.9) and

c(p) = E
[
‖Θ‖αp /‖Θ‖αα

]
.

Moreover, ‖Θ‖α <∞ a.s. holds if limt→+∞ |Θt| = 0, i.e., for time series with short-range memory.
It follows straightforwardly that c(α) = 1 and the α-cluster satisfies

Q(α) d
= Θ/‖Θ‖α.

1.5.5 Cluster inference

Concerning cluster inference, we can summarize the main features of extreme episodes with
spatiotemporal coverage through cluster statistics. To address (Quest. 3), we propose consistent
disjoint blocks estimator based on extremal `p-blocks, for p-cluster inference. Our methodology
uses order statistics of the `p-norms sample as empirical thresholds. Roughly speaking, for cluster
inference we consider an intermediate integer sequence (bn), the disjoint blocks defined in (1.5.5),
and we write m = mn = bn/bnc. Then, for suitable continuous bounded shift-invariant functionals
f : `p → R, we define the statistic fQp by

fQp = E[f(Q(p))].

We propose to estimate the statistic fQp by

f̂Qp :=
1

k

m∑
t=1

f
(
Bt/‖Bt‖p

)
11(‖Bt‖p > ‖Bt‖p,(k)), (1.5.12)

where ‖B‖p,(1) ≥ · · · ≥ ‖B‖p,(m) and

k := kn = bmnP(‖X[1,bn]‖p > xbn)c. (1.5.13)
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Then, Theorem 2.4.1 states that, under suitable mixing conditions, ‖B‖p,(k)/xbn
P−→ 1 and

f̂Qp
P−→ fQp , n→ +∞.

Furthermore, in Theorem 5.2.1 we state sufficient conditions yielding

√
k(f̂Qp − fQp )

d−→ N
(
0,Var(f(Q(p))

)
, n→ +∞.

One of the big challenges for implementing the estimators in (1.5.12) is to determine how to
choose the sequence (kn) in practice. The choice of k = kn points to the classical bias-variance
trade-off in extreme value statistics (see Resnick [143]), where selecting k very large reduces the
variance but it might increase the bias. This difficulty in choosing k appeals to (Quest. 2) since
we have to choose a correct proportion of extremal blocks out of a sample to guarantee unbiased
estimates. Furthermore, notice that in our setting the sequence (kn) also depends on p, and, from
Equation (1.5.13) and Equation (1.5.9), kn = kn(p) must satisfy

kn(∞) ∼ c(∞)nP(|X0| > xbn) ≤ c(p)nP(|X0| > xbn) ∼ kn(p), n→ +∞, (1.5.14)

such that p 7→ c(p) is the non-increasing function in (1.5.9) and (1.5.10). Then, it follows straightfor-
wardly from Equation (1.5.14) that inference based on extremal `p-blocks as in (1.5.12), for p <∞,
justifies taking k larger compared to inference built on extremal `∞-blocks. Moreover, note that the
same quantity fQp can be obtained using different pairs p′, fp′ , thanks to the cluster representation
in (1.5.11). In this case, we must keep in mind to multiply f by the change of norms derivative to
obtain fp′ . We further illustrate in Chapter 2 that inference based on extremal `p-blocks with p <∞
can be advantageous compared to the classical approach letting p =∞, since for this last approach
choosing k can be more challenging. Consistency of the disjoint blocks estimators in (1.5.12) is
proven in Chapter 2, and asymptotic normality in Chapter 5.

As an example, we can apply cluster-based inference to estimate the extremal index. Interpreta-
tion of the extremal index through the ∞-cluster features is the basis for inference procedures from
the early 1990s [160]. The main idea in this case is to infer the extremal index from the Equation
(1.5.6). This strategy motivated the so-called extremal index blocks estimator in [88, 161], based on
counts of exceedances per cluster, and also the runs estimator [161, 65], based on interexceedances
lengths. In our setting, we can deduce from (1.5.11) the relation

θ|X| = c(∞) = E[‖Q(α)‖α∞], (1.5.15)

such that Q(α) is the α-cluster. Equation (1.5.15) suggests to use extremal `α-blocks to infer the
extremal index. Letting p = α and f = f : (xt) 7→ ‖xt‖α∞/‖xt‖αα in (1.5.12), we deduce an α-
cluster-based consistent estimator θ̂Q|X| of the extremal index. We review the extremal index, and

assess α-cluster-based inference of the estimator θ̂Q|X| in Chapter 3.
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Furthermore, a theoretical framework for proving asymptotic normality of cluster-based disjoint
blocks estimators was first established in [52]. Actually, [52] treated in detail estimation of the
aforementioned extremal index so-called blocks estimator in [88, 161]. Notice that in general for
disjoint blocks-type estimation, we can start the series at a lagged time unit and compute a possibly
different estimate. We can then take means of the disjoint blocks estimator computed over lagged
observations aiming to improve inference. This strategy yields to the sliding blocks estimators.
Asymptotic normality of the cluster-based sliding blocks estimators was studied in [51, 28]; see
also [108]. Variance computations indicate cluster-based sliding blocks estimators typically have
the same asymptotic variance than disjoint blocks estimators. Furthermore, already in [39, 50], the
authors discussed how to improve cluster inference using the (tail) index of the time series α > 0.
Our α-cluster theory gives a solid theoretical framework to further study this strategy exploiting
the information on the (tail) index α.

1.5.6 Marginal inference

Concerning marginal inference, Chapter 4 introduces the stable sums method for inferring mul-
tivariate high quantiles. Algorithm 1 summarizes the new inference methodology which aims to
address (Quest. 4). We claim that looking at `α-norms rather than looking at `∞-norms, can be
seen as a robust approach for aggregating the spatiotemporal information within an extremal block.
Consider observations X[1,n], an integer sequence (bn) satisfying n/bn → +∞, as n → +∞, and
the disjoint blocks defined in (1.5.5). We deduce from (1.5.2) and (1.5.9) the following asymptotic
approximation

P(X0,j > xbn) ∼ m(j) (bn c(p))
−1P(‖X[1,bn]‖p > xbn), n→ +∞, (1.5.16)

such thatX0,j is the j-th coordinate ofX0, for j = 1, . . . , d, andm(j) is a positive constant satisfying

P(X0,j > xbn) ∼ m(j)P(|X0| > xbn), n→ +∞,

where m(j) = E[(Θ0,j)
α
+] tracks the spatial features of the vector X0 with respect to the j-th

coordinate, and does not depend on the temporal aspects. Then, (1.5.16) suggests to aggregate the
d-variate observations within blocks B1 = X[1,bn], in space and in time, through the `α–norm to
infer the marginal extremal features of X1. In particular, in Equation (1.5.16) we focus on inference
of marginal coordinates. Of course, this approach can be implemented, albeit the knowledge of the
two constants m(j), c(p). Though, choosing p = α, the (tail) index, in Equation (1.5.16), yields
c(α) = 1 which simplifies to

P(X0,j > xbn) ∼ m(j) (bn)−1 P(
∑bn

t=1|Xt|α > xαbn), n→ +∞. (1.5.17)

Hence, we can infer the coordinate aspects of X0,j through (1.5.17), for j = 1, . . . , d. We pursue
this strategy in Chapter 4 for high return levels inference.
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Chapter 4 explains our new inference methodology in Algorithm 1, which responds to (Quest.
4). Roughly speaking, suppose the constants m(j), for j = 1, . . . , d, are known or have been already
estimated. From the right-hand side of Equation (1.5.17), we can see that the extrapolation of high
levels is possible from the distribution function

x 7→ P(
∑bn

t=1|Xt|α ≤ x ). (1.5.18)

Actually, since |X0|α is regularly varying with (tail) index equal to one, the central limit theory
justifies modeling the distribution in (1.5.18) with a stable distribution. In practice, we propose
to fit the sub-sample of disjoint sums: (‖Bt‖αα)t=1,...,mn (see (1.5.5)), with a stable distribution of
stable parameter one. From this fit we can infer the distribution in (1.5.18). Finally, for high return
levels inference, we rely on the asymptotic approximation from Equation (1.5.17) and extrapolate
the right-hand side of Equation (1.5.17) from the fitted stable distribution.

Two major advantages can be highlighted from this procedure. First, we fit a univariate sta-
ble distribution to the α-powers of sums only once, and information on the whole spatiotemporal
extreme event is available in this first step. In simulation, this seems to enhance inference. Then,
in the second step, we allocate the weights m(j), for j = 1, · · · , d, to recover coordinate features.
Second, (1.5.17) keeps track of the temporal memories of the time series but avoids typical declus-
tering methods [65, 34], which are needed for the Pareto-based methods. Indeed, these methods
often rely on the asymptotics of `∞-blocks. To conclude, this new approach is justified since we will
show c(α) = 1 for a number of classical models exhibiting short-range time dependence behavior.
Moreover, this method also requires estimating the (tail)-index α > 0, but this is a mandatory step
also in Pareto-based high quantile estimation. Again, it is important to highlight the important
role of α for assessing temporal dependencies. Chapter 4 concludes with the analysis of fall daily
heavy rainfall in France from the data set introduced in Section 1.2.
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Chapter 2: Large deviations of `p–blocks of regularly varying time series and
applications to cluster inference

Abstract

In the regularly varying time series setting, a cluster of exceedances is
a short period for which the supremum norm exceeds a high threshold.
We propose to study a generalization of this notion considering short
periods, or blocks, with `p−norm above a high threshold. Our main
result derives new large deviation principles of extremal `p-blocks. We
show an application to cluster inference to motivate our result, where
we design consistent disjoint blocks estimators. We focus on inferring
important indices in extreme value theory, e.g., the extremal index.
Our approach motivates cluster inference based on extremal `p–blocks
with p <∞ rather than the classical one with p =∞. Our estimators
also promote the use of large empirical quantiles from the `p−norm of
blocks as threshold levels which eases implementation and facilitates
comparison.

keywordsa: Extremal index, cluster Poisson process, extremal cluster,
regularly varying time series, affine stochastic recurrence equation, au-
toregressive process
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Main contributions

I address (Quest. 1-3) in this Chapter. The following are my main contributions:

- (Quest. 1): Recall my goal to model extremal characteristics of blocks X[0,n], as n →
+∞. Theorem 2.2.1 presents large deviations of blocks embedded in the shift-invariant
sequential space (˜̀p, d̃p), and defines p-clusters Q(p) ∈ `p, satisfying ‖Q(p)‖p = 1, a.s.

- (Quest. 3): I present in Theorem 2.4.1 consistent disjoint blocks estimators tailored to
infer the features of extremal `p-blocks. The estimators in (2.4.2) can be used to infer
statistics

fQp = E[f(YQ(p))], (2.0.1)

for suitable functionals f : `p → R, Y Pareto distributed, P(Y > y) = y−α, for y > 1,
and independent of Q(p).

Moreover, Proposition 2.3.1 show that all p-cluster are related through a change of
norms functional. Hence, the same statistic, let’s say fQp in (2.0.1), can be obtained by
combining pairs q, fq : `q → R, for p, q > 0.

- (Quest. 2): The new estimators in (2.4.2) use order statistics of the `p-norms sub-
sample as threshold levels. This strategy aims to stress the intrinsic relation between
the large deviation results from Theorem 2.2.1, and the choice of p indicating we infer
fQp in (2.0.1) using extremal `p-blocks. I demonstrate inference with extremal `p-blocks,
for p < ∞, is advantageous compared to the classical approach p = ∞. This is further
illustrated with numerical experiments.
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2.1 Introduction

For various applications of extreme value statistics with stationary time series, it is natural
to wonder how a recorded high level can affect the future behavior of the sequence or how often
extreme events occur. However, the extremal dependencies of the time series can disturb the
inference procedures tailored for independent observations; cf. Leadbetter [109], Embrechts et al.
[59]. We consider the setting of Rd-valued stationary regularly varying time series (Xt)t∈Z with
generic element X0; see Section 2.2.1 for a definition, cf. Basrak and Segers [10]. In this framework,
an exceedance of a high threshold by the norm |Xt| at time t might trigger consecutive exceedances
in some small time interval around t. To model these short periods with at least one exceedance
Davis and Hsing introduced the clusters (of exceedances) implicitly in the seminal paper [40]. These
were further reviewed in Basrak and Segers [10] and Basrak et al. [9].

The main motivation for studying clusters (of exceedances) can be traced back to Theorem 2.5.
in Davis and Hsing [40]. Roughly speaking, for weakly dependent regularly varying time series,
the limit distribution of a−1

n X[0,n] = a−1
n (X0, . . . ,Xn) is fully characterized in terms of the index of

regular variation, the cluster (of exceedances), and the extremal index of (|Xt|), denoted by θ|X|,
where nP(|X0| > an)→ 1. In this representation, the notion of a cluster aims at modeling how rare
events of X[0,n] happen, i.e., its behavior if its supremum norm exceeds the high level xn, and as the
probability of recording a cluster tends to zero, i.e., P(‖X[1,n]‖∞ > xn) ∼ θ|X|nP(|X0| > xn) → 0.
From this last equivalence, we can also see that θ|X| summarizes the ratio between the expected
number of exceedances in the stationary time-dependent scenario and the independent setting.

By the previous discussion, the cluster (of exceedances) is tied together with the extremal index
by the supremum norm. Our main theoretical result extends the aforementioned ideas from the `∞–
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norm to `p–norms. In Theorem 2.2.1 we investigate the behavior of X[0,n] when its `p–norm exceeds
high levels (xn) satisfying P(‖X[0,n]‖p > xn) = P(

∑n
t=1 |Xt|p > xpn) → 0 as n → +∞. We call this

a large deviation result since it describes the block behavior when the probability that the partial
sums of the norm pth powers of Rd-valued regularly varying vectors exceed the extreme threshold
xpn. This leads us to a new definition of a cluster process in the space `p = `p(Rd) and, in the
limiting case p = ∞, one recovers the classical clusters (of exceedances). Similarly, large deviation
principles for sums were considered by Nagaev [124], Cline and Hsing [33] in the independent heavy-
tailed case, and by Mikosch and Wintenberger [121, 122, 123], Mikosch and Rodionov [118] in the
dependent heavy-tailed case. Instead, we derive large deviation principles for blocks in `p and focus
on `p–norms: they increase when p decreases, hence the proportion of extremal clusters increases.
This fact points at an advantageous road for improving inference procedures which we will follow
in the second part of this article.

For inference purposes we divide a sample X1, . . . ,Xn into disjoint blocks (Bt)1≤t≤bn/bnc, Bt :=

X(t−1) bn+[1,bn], for a sequence of block lengths (bn) such that bn → ∞ and bn/n → 0 as n → ∞.
To apply our findings we study cluster inference. Typically, inference on clusters (of exceedances)
starts with selecting blocks whose supremum norm exceeds a high threshold xbn ; cf. Kulik and
Soulier [108]. Instead, we aim at considering blocks whose `p–norms exceed a high threshold. As
a matter of fact, for cluster inference the thresholds (xbn) should adapt to the block lengths (bn)

and take into account the value of p. In the existing literature for p = ∞ no detailed advice is
given of how the couple (bn) and (xbn) must be chosen; see for example Drees, Rootzén [52], Drees,
Neblung [51], Cissokho, Kulik [28], Drees et al. [50], who assume bias conditions on the sequence
(xn) such as nP(|X0| > xn)→ 0 as n→∞. It is common practice to replace xbn by an upper order
statistic of (|Xt|)1≤t≤n, turning the choice of bn into a delicate problem which has not been studied
carefully. This problem occurs for example in the context of the blocks estimator of the extremal
index proposed by Hsing [88].

To address the aforementioned threshold/block length difficulties of cluster inference, we design
consistent disjoint blocks methods in Theorem 2.4.1 with thresholds chosen as order statistics of `p–
norms that adapt to the length of the block. In this way one deals with the classical bias-variance
trade-off in extreme value statistics (see Resnick [143]) where choosing a small number of order
statistics increases the variance while a large number might lead to biased estimates. We retrieve
the need for a rigorous definition of extremal `p–blocks for cluster inference to reveal how p can play
a key role. Indeed, we can infer the same quantity using extremal `p–blocks, for different values of
p, by applying a change of norms functional. When comparing these estimators, our large deviation
principles support our approach for p < ∞ is more robust compared to the classical perspective
based on p = ∞.A similar change of norms approach was investigated in Drees et al. [53] and
Davis et al [39] for inference of the tail process. In this paper, we focus on inference of cluster
processes and show consistency of the blocks estimators. Asymptotic normality of our estimators
can be derived by combining arguments from Theorem 4.3 in Cissokho and Kulik [28] and the large
deviation arguments developed below; this topic is the subject of ongoing work.
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We apply our inference procedure to estimate the extremal index using extremal `α–blocks, with
α equal to the index of regular variation of (Xt). We also consider inference of cluster indices as
defined by Mikosch and Wintenberger [122] on partial sum functionals by considering extremal `1–
blocks. These functionals are shift-invariant with respect to the backward shift in sequence spaces;
see Kulik and Soulier [108] for details. To define extremal `p–blocks for p ≤ α, we require a so-called
vanishing-small-values condition too; see Section 2.5. Another advantage of this consideration is
that, using a simple continuity argument, we can also study αth-power sum functionals acting on `p.
Then, coupled with the random shift analysis of Janssen [96] based on the αth moment of the cluster
process, we also extend cluster inference to functionals acting on `p rather than on shift-invariant
spaces. We heavily rely on Theorem 2.2.1 to provide the main argument for comparing inference
methods as we build therein on the definition of cluster processes from the new large deviation
principles.

2.1.1 Outline of the paper.

Section 2.2 states the main large deviation principle in Theorem 2.2.1 after introducing the
preliminaries on regular variation and fixing the notation. In Section 2.3 we study the cluster
processes in the space `p introduced in Theorem 2.2.1. In Section 2.4 we apply Theorem 2.2.1 to
inference for shift-invariant functionals acting on these cluster processes through Theorem 2.4.1,
choosing thresholds as empirical quantiles of the `p–norms of blocks. In an example, we illustrate
our approach for p < ∞ and compare it with the setting p = ∞. This is done at the end of
Section 2.4. In Section 2.5 we supplement the discussion on Theorem 2.2.1 and analyze in depth its
assumptions. In Section 2.6 we provide inference for non-shift-invariant functionals. We defer all
proofs to Section 2.7.

2.2 Preliminaries and main result

2.2.1 About regular variation of time series

We consider an Rd-valued stationary process (Xt). Following Davis and Hsing [40], we call it
regularly varying if the finite-dimensional distributions of the process are regularly varying. This
notion involves the vague convergence of certain tail measures; see Resnick [143]. Avoiding the
concept of vague convergence and infinite limit measures, Basrak and Segers [10] showed that
regular variation of (Xt) is equivalent to the weak convergence relations: for any h ≥ 0,

P
(
x−1(Xt)|t|≤h ∈ · | |X0| > x

) w−→ P
(
Y (Θt)|t|≤h ∈ ·

)
, x→∞ ,

(2.2.1)

where Y is Pareto(α)-distributed, i.e., it has tail P(Y > y) = y−α, y > 1, independent of the vector
(Θt)|t|≤h and |Θ0| = 1. According to Kolmogorov’s consistency theorem, one can extend the latter
finite-dimensional vectors to a sequence Θ = (Θt)t∈Z in (Rd)Z called the spectral tail process of (Xt).
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The regular variation property, say RVα, of (Xt) is determined by the (tail)-index α > 0 and the
spectral tail process.

Extending vague convergence to M0-convergence, Hult and Lindskog [89] introduced regular
variation for random elements assuming values in a general complete separable metric space; see
also Lindskog et al. [113]. Segers et al. [152] proved regular variation of random elements with
values in star-shaped metric spaces. Their results are based on weak convergence in the spirit of
(2.2.1). Our focus will be on a special star-shaped space: the sequence space `p, p ∈ (0,∞] equipped
with the metric

dp(x,y) :=

 ‖x− y‖p =
(∑

t∈Z |xt − yt|p
)1/p

, p ≥ 1 ,

‖x− y‖pp , p ∈ (0, 1) ,
x,y ∈ `p ,

with the usual convention in the case p =∞. We know that dp makes `p a separable Banach space
for p ≥ 1, and a separable complete metric space for p ∈ (0, 1). Using the p-modulus function ‖ · ‖p,
the `p-valued stationary process (Xt) has the property RVα if and only if relation (2.2.1) holds with
|X0| replaced by ‖X[0,h]‖p. Equivalently, (Proposition 3.1 in Segers et al. [152]), for any h ≥ 0,

P
(
x−1X[0,h] ∈ · | ‖X[0,h]‖p > x

) w−→ P
(
Y Q(p)(h) ∈ ·

)
, x→∞ ,

(2.2.2)

where for a ≤ b, X[a,b] = (Xa, . . . ,Xb), and the Pareto(α) variable Y is independent of Q(p)(h) ∈
Rd (h+1), and ‖Q(p)(h)‖p = 1 a.s. We call Q(p)(h) the spectral component of X[0,h].

2.2.2 Notation

For integers i and a < b we write i + [a, b] = {i + a, . . . , i + b}. It is convenient to embed the
vectors x[a,b] ∈ Rd(b−a+1) in (Rd)Z by assigning zeros to indices i 6∈ [a, b], and we then also write
x[a,b] ∈ (Rd)Z. We write x := (xt) = (xt)t∈Z, and define truncation at level ε > 0 from above and
below by xε = (xtε)t∈Z, x

ε = (xt
ε)t∈Z, where xtε = xt 11(|xt| > ε), xεt = xt11(|xt| ≤ ε).

Recall the backshift operator acting on x ∈ (Rd)Z: Bkx = (xt−k)t∈Z, k ∈ Z. Let ˜̀p = `p/ ∼ be
the quotient space with respect to the equivalence relation ∼ in `p: x ∼ y holds if there exists k ∈ Z
such that Bkx = y. An element of ˜̀p is denoted by [x] = {Bkx : k ∈ Z}. For ease of notation, we
often write x instead of [x], and we notice that any element in `p can be embedded in ˜̀p by using
the equivalence relation. We define for [x], [y] ∈ ˜̀p,

d̃p([x], [y]) := inf
k∈Z

{
dp(B

ka,b) : a ∈ [x] ,b ∈ [y]
}
.

For p > 0, d̃p is a metric on ˜̀p and turns it into a complete metric space; see Basrak et al. [9].
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2.2.3 Main result

We start by giving our main result on large deviations of the sequence X[0,n], that we embed in
the space (˜̀p, d̃p). The proof is postponed to Section 2.7.1.

Theorem 2.2.1. Consider an Rd-valued stationary time series (Xt) satisfying RVα for some α > 0.
For a given p > 0, assume that there exist a sequence (xn) such that nP(|X0| > xn)→ 0 and some
κ > 0 such that n/xp∧(α−κ)

n → 0 as n→ +∞. Furthermore, assume that for all δ > 0,

AC : limk→∞ lim supn→∞ P
(
‖X[k,n]‖∞ > δ xn | |X0| > δ xn

)
= 0,

CSp : limε→0 lim supn→∞
P(‖x−1

n X[1,n]

ε
‖p > δ)

nP(|X0| > xn)
= 0.

Then, there exists c(p) > 0 such that

lim
n→+∞

P(‖X[0,n]‖p > xn)

nP(|X0| > xn)
= c(p) . (2.2.3)

Moreover, c(p) < ∞ if p ≥ α, in particular, c(∞) ≤ c(p) ≤ c(α) = 1. If c(p) < ∞ there exists
Q(p) ∈ (`p, dp) such that ‖Q(p)‖p = 1 a.s. and

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖p > xn)

w−→ P(YQ(p) ∈ ·), n→∞ ,

(2.2.4)

in the space (˜̀p, d̃p) where Y is Pareto(α) distributed, independent of Q(p).

Since ‖Q(p)‖p = 1 a.s., Q(p) has interpretation as the spectral component of a regularly vary-
ing `p-valued random element. From (2.2.3) we infer that c(p) is a non-decreasing function of p.
Letting p = ∞, one recovers the classical definition of clusters (of exceedances) in (2.2.4). From
Theorem 2.2.1 we also have c(α) = 1 < ∞ which motivates the study of extremal `α–blocks and,
for the purposes of statistical inference, suggests Q(α) as a potential competitor of Q(∞).

We refer to a relation of the type (2.2.3) as large deviation probabilitiesmotivated by the following
observation. Write S(p)

k =
∑k

t=1 |Xt|p for k ≥ 1. Then |X|p is regularly varying with index α/p.
Relation (2.2.3) implies that

P(‖X[0,n]‖p > xn) = P
(
S(p)
n > xpn

)
∼ c(p)nP(|X0| > xn)→ 0 , n→∞ .

Thus the left-hand probability describes the rare event that the sum process S(p)
n exceeds the extreme

threshold xpn.
Equation (2.2.4) extends the large deviation result for ‖X[0,n]‖p in (2.2.3) to one for the process

X[0,n] in the sequence space `p. Motivated by inference for the spectral cluster process Q(p), we
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establish (2.2.4) employing weak convergence in the spirit of the polar decomposition given in Segers
et al. [152].

We work under the one-sided anti-clustering condition AC together with a telescoping sum
argument to compensate for the classical two-sided condition (2.5.1) used in Kulik and Soulier
[108]. Conditions similar to CSp are standard when dealing with sum functionals acting on (Xt)

and hold for any time series satisfying RVα for p > α by a Karamata–type argument. In Section 2.5
we further discuss the assumptions of Theorem 2.2.1.

Remark 2.2.2. Equation (2.2.4) provides a family of Borel sets in (˜̀p, d̃p) for which the weak limit
of the self-normalized blocks X[0,n]/‖X[0,n]‖p exists. This result implies that the sequence of measures

µn(·) := P(x−1
n X[0,n] ∈ ·)/P(‖X[0,n]‖p > xn)

→ µ(·) :=

∫ ∞
0

P(yQ(p) ∈ ·) d(−y−α) , n→∞ ,

in the M0-sense in (˜̀p, d̃p). By the portmanteau theorem for measures (Theorem 2.4. in Hult and
Lindskog [89])

µn(A) = P(x−1
n X[0,n] ∈ A)/P(‖X[0,n]‖p > xn)→ µ(A) ,

for all Borel sets A in (˜̀p, d̃p) satisfying µ(∂A) = 0 and 0 6∈ A. This approach is discussed in Kulik
and Soulier [108] where similar conditions are stated for obtaining limit results for ˜̀1-functionals.

2.3 Spectral cluster process representation

2.3.1 The spectral cluster process in `p

From (2.2.1) recall the spectral tail process Θ of a stationary sequence (Xt) satisfying RVα.
We start with a representation of the spectral cluster process Q(p) from (2.2.4) in terms of Θ. The
proof is deferred to Section 2.7.3.

Proposition 2.3.1. For p, α > 0 assume ‖Θ‖p + ‖Θ‖α < ∞ a.s. Under the assumptions of
Theorem 2.2.1, the distribution of the spectral cluster process Q(p) in the space (`p, dp) is given by

P(Q(p) ∈ ·) = c(p)−1E
[
‖Θ/‖Θ‖α‖αp 11(Θ/‖Θ‖p ∈ · )

]
, (2.3.1)

where the constant c(p) defined in (2.2.3) admits the representation

c(p) = E
[
‖Θ/‖Θ‖α‖αp

]
. (2.3.2)

This result provides a new representation of the distribution of Q(p) for fixed p and relates
distinct spectral cluster processes to each other by the change of norms transform in (2.3.1). In the
next sections we consider the cases p ∈ {α,∞} in detail.
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The spectral cluster process in `α

In view of (2.3.1) the process Θ/‖Θ‖α is the candidate for the `α-spectral cluster process Q(α)

introduced in (2.2.4), and it plays a key role for characterising Q(p) in general. The following result
shows that Θ/‖Θ‖α is well defined under AC.

Proposition 2.3.2. Let (Xt) be a stationary sequence satisfying RVα with spectral tail process
(Θt). Then the following statements are equivalent:

i) ‖Θ‖α <∞ a.s. and Θ/‖Θ‖α is well defined in `α.

ii) |Θt| → 0 a.s. as t→∞.

iii) The time of the largest record T ∗ := inf{s : s ∈ Z such that |Θs| = supt∈Z |Θt|} is finite a.s.

Moreover, these statements hold under AC.

A proof of Proposition 2.3.2 is given in Lemma 3.6 of Buriticá et al. [25], appealing to results
by Janssen [96].

From (2.2.2) recall the sequence of spectral components (Q(α)(h))h≥0 of the vectors (X[0,h])h≥0

with the property ‖Q(α)(h)‖α = 1 a.s. Our next result relates the sequence (Q(α)(h))h≥0 to Θ/‖Θ‖α,
the candidate process for Q(α).

Proposition 2.3.3. Let (Xt) be a stationary time series satisfying RVα and limt→∞ |Θt| = 0 a.s.
Then Q(α)(h)

d−→ Q(α)(∞) as h→∞ in (˜̀α, d̃α) with Q(α)(∞)
d
= Θ/‖Θ‖α.

This result gives raise to the interpretation of Θ/‖Θ‖α as the spectral component of (Xt) in `α.
The proof is given in Section 2.7.3. Under the assumptions of Theorem 2.2.1 we also have the a.s.
representations Q(α) = Θ/‖Θ‖α and Θ = Q(α)/|Q(α)

0 | in (`α, dα).

The spectral cluster process in `∞

Letting p =∞ in Theorem 2.2.1, we retrieve the classical definition of the cluster (of exceedances)
by embedding Q(∞) from (2.2.4) in (˜̀∞, d̃∞). From Proposition 2.3.2, assuming AC, we can relate
the cluster (of exceedances) to Θ/‖Θ‖α using (2.3.1) by

P(YQ(∞) ∈ · ) = P(YΘ/‖Θ‖∞ ∈ · | ‖YΘ/‖Θ‖α‖∞ > 1) ,

(2.3.3)

where Y is a Pareto(α) random variable independent of Q(∞) and Θ. In particular, ‖Q(∞)‖∞ = 1

a.s. and P(‖YΘ/‖Θ‖α‖∞ > 1) = E[‖Θ/‖Θ‖α‖α∞] = c(∞).

Assuming AC and additional mixing assumptions (see e.g. Theorem 2.3. in [25]), the extremal
index θ|X| of (|Xt|) exists and equals c(∞). Under AC, Basrak and Segers [10] proved that |Θt| → 0

as |t| → ∞ and c(∞) is given by

c(∞) = E
[
‖(Θt)t≥0‖α∞ − ‖(Θt)t≥1‖α∞

]
. (2.3.4)
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Following Planinić and Soulier [138], the spectral tail process (Θt) satisfies the time-change formula:
for any measurable bounded function f : (˜̀p, d̃p) → R such that f(λx) = f(x) for all λ > 0, we
have for all t, s ∈ Z,

E[f(Bs(Θt))11(Θ−s 6= 0)] = E
[
|Θs|α f

(
(Θt)

)]
. (2.3.5)

An application of this formula and a telescoping sum argument yield

c(p) = E[‖Θ‖αp /‖Θ‖αα]

=
∑
s∈Z

E
[(
‖(Θt)t≥−s/‖Θ‖α‖αp − ‖(Θt)t≥−s+1/‖Θ‖α‖αp

)]
=

∑
s∈Z

E
[
|Θs|α

(
‖(Θt)t≥0/‖Θ‖α‖αp − ‖(Θt)t≥1/‖Θ‖α‖αp

)]
= E

[
‖Θ‖αα

(
‖(Θt)t≥0/‖Θ‖α‖αp − ‖(Θt)t≥1/‖Θ‖α‖αp

)]
= E

[
‖(Θt)t≥0‖αp − ‖(Θt)t≥1‖αp

]
. (2.3.6)

Thus we deduce the representation in (2.3.4) for c(∞) by letting p =∞ in (2.3.6).
Furthermore the representation in (2.3.6) extends from p = ∞ to 0 < p ≤ ∞ under AC. We

notice that under AC it is in general not obvious whether c(p) is finite or not for 0 < p < α. A
Taylor expansion shows that (2.3.6) is finite if E[‖(Θt)t≥0‖α−pp ] <∞ and thus c(p) <∞, which is a
necessary condition for defining Q(p) as in (2.2.4).

2.4 Consistent cluster inference based on spectral cluster processes

Let X1, . . . ,Xn be a sample from a stationary sequence (Xt) satisfying RVα for some α > 0

and choose p > 0. We split the sample into disjoint blocks Bt := X(t−1)b+[1,b], t = 1, . . . ,mn, where
b = bn →∞ and m = mn := [n/bn]→∞. Throughout we assume the conditions of Theorem 2.2.1
for p. Then, in particular, P(‖B1‖p > xb)→ 0 and k = kn := [mnP(‖B‖p > xbn)]→∞.

The key message from Proposition 2.3.1 is that the same quantity, say e.g., c(q), for q > 0, can
be obtained from letting different functionals act on Q(p) for different p, in particular for p < ∞.
In this context, we want to compare the inference procedures of p < ∞ and p = ∞, and promote
the use of the order statistics of ‖Bt‖p, t = 1, . . . ,mn, i.e., ‖B‖p,(1) ≥ ‖B‖p,(2) ≥ · · · ≥ ‖B‖p,(m) .

2.4.1 Cluster functionals and mixing

The real-valued function g on ˜̀p is a cluster functional if it vanishes in some neighborhood of the
origin and P(YQ(p) ∈ D(g)) = 0 where D(g) denotes the set of discontinuity points of g. In what
follows, it will be convenient to write G+(˜̀p) for the class of non-negative functions on ˜̀p which
vanish in some neighborhood of the origin.

For asymptotic theory we will need the following mixing condition.
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Condition MXp. There exists an integer sequence b = bn →∞ such that m = mn →∞, and for
any Lipschitz-continuous f ∈ G+( ˜̀p), the sequence (xn) satisfies

E
[
e−

1
k

∑m
t=1 f(x−1

b Bt)
]

=
(
E
[
e−

1
k

∑bm/kc
t=1 f(x−1

b Bt)
])k

+ o(1) , n→∞ .

(2.4.1)

If MXp is required in the sequel we will refer to the sequences (bn), (mn) and (kn) chosen in
this condition. MXp is similar to the mixing conditions A, A′ in Davis and Hsing [40], Basrak et
al. [8], respectively. These are defined in terms of sequences (f(Xt)) while our functionals f act
on blocks. MXp holds under mild conditions, for example, under strong mixing with quite general
mixing rate; cf. Lemma 6.2. in Basrak et al. [9].

2.4.2 Consistent cluster inference

The following result is the basis for an empirical procedure for spectral cluster inference built
on disjoint blocks. The proof is given in Section 2.7.4.

Theorem 2.4.1. Assume the conditions of Theorem 2.2.1 hold for p > 0 with c(p) < ∞ together
with MXp. Then ‖B‖p,(k)/xb

P−→ 1 and for all g ∈ G+( ˜̀p),

1

k

m∑
t=1

g
(
‖B‖−1

p,(k)Bt

) P−→
∫ ∞

0
E
[
g(yQ(p))

]
d(−y−α), n→∞ . (2.4.2)

The sequence (kn) in (2.4.2) depends on p, but the choice of p is flexible due to Proposition 2.3.1
relating spectral cluster processes by a change of norms functional. The constant at the right-hand
side of (2.4.2) can be written in different ways by combining the choice of p with the choice of the
functional g. The choice of p, g are left to the practitioner. Theorem 2.4.1 points to the following
two advantages.

Notice Theorem 2.4.1 promotes the use of order statistics of the sample of `p–norms where
thresholds adapt automatically to block lengths. This allows us to exploit the link between the
block length and the threshold through the sequence (kn) that must satisfy

kn = [mnP(‖B‖p > xbn)] ∼ c(p)nP(|X0| > xbn) = o(n/b(α/p)∨1
n ),

n→ +∞. (2.4.3)

The asymptotic equivalence follows from the restriction on the thresholds in Theorem 2.2.1 where
for p < α, n/xpn → 0, and for p = α, n/xα−κn → 0 for some κ > 0.

Also from (2.4.2) we see that kn corresponds to the total number of extreme blocks used for
inference. Then, for inference through Q(p), equation (2.4.3) justifies taking kn larger if p <∞ than
if p =∞ since c(·) is a non-increasing function of p.

In the next section we illustrate these two points.
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2.4.3 Applications

In this section we apply Theorem 2.4.1 to inference on some indices related to the extremes in
a time-dependent sample and focus on cluster inference using Q(α) and Q(1).

The extremal index

The extremal index of a regularly varying stationary time series has interpretation as a measure
of clustering of serial exceedances, and was originally introduced in Leadbetter [109] and Leadbetter
et al. [110]. If (X′t) is iid with the same marginal distribution as (Xt) then the extremal index θ|X|
relates the expected number of serial exceedances of (|Xt|) with the serial exceedances of (|X′t|).

We aim to apply Theorem 2.4.1 with p = α. In this setting, the change of norms formula in
(2.3.2) and the discussion in Section 2.3.1 lead to the identities

θ|X| = c(∞) = E
[‖Θ‖α∞
‖Θ‖αα

]
= E[‖Q(α)‖α∞].

Then letting p = α and g(x) =
(
‖x‖α∞/‖x‖αα

)
11(‖x‖α > 1) on the right-hand side of (2.4.2), we

obtain ∫ ∞
0

E
[
g(yQ(α))

]
d(−y−α) =

∫ ∞
0

E
[‖Q(α)‖α∞
‖Q(α)‖αα

11(‖Q(α)‖αα > y−α)
]
d(−y−α)

= E[‖Q(α)‖α∞] = c(∞) .

Next we introduce a new consistent disjoint blocks estimator of the extremal index defined from
exceedances of `α-norm blocks.

Corollary 2.4.2. Assume the conditions of Theorem 2.4.1 for p = α. Then

1

k

m∑
t=1

‖Bt‖α∞
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k))
P−→ c(∞) , n→∞ . (2.4.4)

To motivate this estimator of c(∞) we compare it to one based on the cluster (of exceedances)
following a more classical approach. Motivated by the blocks estimator in Hsing [88] for the extremal
index, we let g(x) :=

∑
j∈Z 11(|xt| > 1) act on large `∞–blocks. Choosing p = ∞ and fixing g on

the right-hand side of (2.4.2), we can find an integer sequence k′ = k′n →∞ such that

( 1

k′

n∑
t=1

11(|Xt| ≥ ‖B‖∞,(k′))
)−1 P−→ c(∞) , n→∞ . (2.4.5)

Arguing as for (2.4.3), we obtain k′n ∼ mnP(‖B‖∞ > xb) ∼ c(∞)nP(|X0| > xb). Thus, the
proportion of extreme blocks used in (2.4.5) depends on c(∞) whereas the number of extreme
blocks used in (2.4.4) is constant regardless of the time dependence structure.
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A cluster index for sums

In this section we assume α ∈ (0, 2) and E[X] = 0 for α ∈ (1, 2). We study the partial sums
Sn :=

∑n
t=1 Xt, n ≥ 1, and introduce a normalizing sequence (an) such that nP(|X0| > an) → 1.

Starting with Davis and Hsing [40], α-stable central limit theory for (Sn/an) was proved under
suitable anti-clustering and mixing conditions.

In this setting, the quantity c(1) appears naturally and was coined cluster index in Mikosch
and Wintenberger [122]. For d = 1 it can be interpreted as an equivalent of the extremal index
for partial sums rather than maxima. Indeed, consider a real-valued regularly varying stationary
sequence (Xt) with index of regular variation α ∈ (0, 2) satisfying P(X ≤ −x) = o

(
P(X > x)

)
or

X
d
= −X. Consider an iid sequence (X ′t) with X d

= X ′ and partial sums (S′n). Then a−1
n Sn

d−→ ξα

and a−1
n S′n

d−→ ξ′α, both ξα and ξ′α are α-stable and

E[e iuξα ] =
(
E[e iuξ

′
α ]
)c(1)

.

Letting p = 1 and g(x) =
(
‖x‖αα/‖x‖α1

)
11(‖x‖1 > 1) on the right-hand side of (2.4.2), we obtain

∫ ∞
0

E
[
g(yQ(1))

]
d(−y−α) =

∫ ∞
0

E
[‖Q(1)‖αα
‖Q(1)‖α1

11(‖Q(1)‖α1 > y−α)
]
d(−y−α)

= E[‖Q(1)‖αα] = (c(1))−1 ,

where the last identity follows from Proposition 2.3.1. Then Theorem 2.4.1 for p = 1 and g as
mentioned yields a consistent estimator of c(1).

Corollary 2.4.3. Assume the conditions of Theorem 2.4.1 for p = 1. Then

(1

k

m∑
t=1

‖Bt‖αα
‖Bt‖α1

11(‖Bt‖1 > ‖B‖1,(k))
)−1 P−→ c(1) , n→∞ . (2.4.6)

As we have argued above, such an estimator is appealing since it is based on large `1-norms of
blocks instead of `∞-norms. Moreover, arguing as in Cissokho and Kulik [28], Kulik and Soulier
[108], we can extend Theorem 2.4.1 for p = ∞ to hold for `1-functionals under CS1. Then, for
g(x) := 11(‖x‖1 > 1) and p =∞ on the right-hand side of (2.4.2), we find k′ = k′n →∞ such that∑m

t=1 11(‖Bt‖1 > ‖B‖∞,(k′))∑n
t=1 11(|Xt| > ‖B‖∞,(k′))

P−→ c(1) , n→∞ , (2.4.7)

where as in (2.4.3), k′n ∼ c(∞)nP(|X0| > xb) then this value gets shrunken by a factor c(∞) ≤ 1

compared to the i.i.d. case. This is not the case for `1-cluster inference since kn ∼ c(1)nP(|X0| > xb)

with c(1) ≥ 1 which suggest the choice of kn in (2.4.6) is more robust. For α ∈ (0, 1) we can argue
similarly and improve inference by proposing an estimator based on `α-norm order statistics.

As in the extremal index example, we promote inference based on extremal `p–blocks with p <∞
for a better control of the tuning parameter kn compared to inference with extremal `∞–blocks.
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Furthermore, Theorem 2.4.1 yields estimators of the parameters of the α-stable limit for (Sn/an)

denoted ξα. Indeed, following the theory in Bartkiewicz et al. [5], we characterize the α-stable limit
in terms of Q(1); the proof is given Section 2.7.4.

Proposition 2.4.4. Assume that (Xt) is a regularly varying stationary sequence with α ∈ (0, 1) ∪
(1, 2) together with the mixing condition:

E[e iu
>Sn/an ] = (E[e iu

>Sbn/an ])mn + o(1) , n→∞ , u ∈ Rd ,

and the anti-clustering condition: for every δ > 0,

lim
l→∞

lim sup
n→∞

n
∑bn

t=lE[(|Xt/an| ∧ δ) (|X0/an| ∧ δ)] = 0 . (2.4.8)

Then Sn/an
d−→ ξα for an α-stable random vector ξα with characteristic function E[exp(iu>ξα)] =

exp(−cα σα(u) (1 − i β(u) tan(απ/2))), u ∈ Rd, where cα := (Γ(2 − α)/|1 − α|)(1 ∧ α) cos(απ/2),
and the scale and skewness parameters have representation

σα(u) := c(1)E[|u>
∑

t∈ZQ
(1)
t |α] ,

β(u) :=
(
E[(u>

∑
t∈ZQ

(1)
t )α+ − (u>

∑
t∈ZQ

(1)
t )α−]

)
/E[|u>

∑
t∈ZQ

(1)
t |α] .

As for c(1), an application of Theorem 2.4.1 with p = 1 for α ∈ (1, 2) and p = α for α ∈
(0, 1) yields natural estimators of the parameters (σα(u), β(u)) in the central limit theorem of
Proposition 2.4.4

An example: a regularly varying linear process

We illustrate the index estimators of Corollaries 2.4.2 and 2.4.3 for a regularly varying linear
process Xt :=

∑
j∈Z ϕjZt−j , t ∈ Z, where (Zt) is an iid real-valued regularly varying sequence (Zt)

with (tail)-index α > 0, and (ϕj) are real coefficients such that
∑

j∈Z |ϕj |1∧(α−ε) < ∞ for some
ε > 0.

In this setting, (Xt) is regularly varying with the same (tail)-index α > 0, and the distributions
of Zt and Xt are tail-equivalent; see Davis and Resnick [46]. The spectral cluster process of (Xt) is
given by Q(α)

t = (ϕt+J/‖(ϕt)‖α) ΘZ
0 , t ∈ Z, where limx→∞ P(±Z0 > x)/P(|Z0| > x) = P(ΘZ

0 = ±1),
ΘZ

0 is independent of a random shift J with distribution P(J = j) = |ϕj |α/‖(ϕt)‖αα; see Kulik and
Soulier [108], (15.3.9). Then

c(∞) = maxt∈Z|ϕt|α/‖ϕ‖αα , c(1) =
(∑

t∈Z|ϕt|
)α
/‖ϕ‖αα .

For the causal AR(1) model given by Xt = ϕXt−1 +Zt, t ∈ Z, |ϕ| < 1, one retrieves θ|X| = c(∞) =

1− |ϕ|α and c(1) = (1− |ϕ|α)/(1− |ϕ|)α.
We aim at comparing estimators of θ|X| and c(1) built on extremal `p–blocks, p < ∞, against

inference over `∞–blocks, for the causal AR(1) model with student(α) noise for α = 1.3. Guided by
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(2.4.3), we take k = kn := max{2, bn/b(1+κ)
n c} with κ = 1. For estimation of α, we follow the bias-

correction procedure in de Haan et al. [83]. This estimator is plugged into (2.4.4), (2.4.6), resulting
in the estimators θ̂|X|, 1/ĉ(1), based on `α- and `1-extremal blocks, respectively. Figures 2.4.5
and 2.4.6 present boxplots of these estimators as a function of bn and for different sample sizes n
in blue. For comparison, we also show boxplots of the estimators in (2.4.5) and (2.4.7) based on
extremal `∞–blocks in white. Estimation based on `p–block for p < ∞ outperforms in simulation
the `∞–blocks approach in terms of bias for fixed k. Also, notice the bias for large block lengths
decreases as n increases. Indeed, if we fix n, the relation bn/b(1+κ)c → 0 as b → ∞ restricts the
block length for small sample sizes. We have fixed the tuning parameter κ = 1, though improvement
can be achieved by fine-tuning κ > 0. We also refer to Buriticá et al. [25] for further simulation
experiences showing that the estimator of the extremal index in (2.4.4) compares favorably with
various classical estimators as regards bias.

2.5 A discussion of the assumptions of the large deviation principle in Theorem 2.2.1

Consider a stationary sequence (Xt) satisfying RVα and let (xn) be a threshold sequences such
that nP(|X0| > xn)→ 0. In the conditions AC and CSp below we refer to the same sequence (xn).
We will discuss the conditions of Theorem 2.2.1.

2.5.1 Anti-clustering condition AC.

For any δ > 0,

lim
k→∞

lim sup
n→∞

P
(
‖X[k,n]‖∞ > δ xn | |X0| > δ xn

)
= 0.

Condition AC ensures that a large value at present time does not persist indefinitely in the extreme
future of the time series. This anti-clustering is weaker than the more common two-sided one:

lim
k→∞

lim sup
n→∞

P
(

max
k≤|t|≤n

|Xt| > δ xn | |X0| > δ xn
)

= 0. (2.5.1)

A simple sufficient condition, which breaks block-wise extremal dependence into pair-wise, is given
by

lim
k→∞

lim sup
n→∞

n∑
t=k

P
(
|Xt| > δ xn | |X0| > δ xn

)
.

Form-dependent (Xt) the latter condition turns into nP(|X0| > δ xn)→ 0 which is always satisfied.
If p ≤ α an extra assumption is required for controlling the accumulation of moderate extremes

within a block.
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Figure 2.4.5. Boxplot of estimates θ̂|X| as a function of bn from (2.4.4) for inference through Q(α)

(in blue) and from (2.4.5) through Q(∞) (in white). 1 000 simulated samples (Xt)t=1,...,n from a
causal AR(1) model with student(α) noise with α = 1.3 and ϕ = 0.8 (left column), ϕ = 0.6 (right
column) were considered. Rows correspond to results for n = 8 000, 3 000, 1 000 from top to bottom.
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Figure 2.4.6. Boxplot of estimates 1/ĉ(1) as a function of bn from (2.4.6) for inference through
Q(1) (in blue) and from (2.4.7) for inference through Q(∞) (in white). We simulate 1 000 samples
(Xt)t=1,...,n from an AR(1) model with student(α) noise; models are the same as in Figure 2.4.5.
Rows correspond to n = 8 000, 3 000, 1 000 from top to bottom.
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2.5.2 Vanishing-small-values condition CSp.

For p ∈ (0, α] we assume that for a sequence (xn) satisfying nP(|X0| > xn) → 0 and for any
δ > 0, we have

lim
ε→0

lim sup
n→∞

P
(∣∣∥∥x−1

n X[1,n]

ε∥∥p
p
− E

[∥∥x−1
n X[1,n]

ε∥∥p
p

]∣∣ > δ
)

nP(|X0| > xn)
= 0. (2.5.2)

We refer to (2.5.2) as condition CSp in what follows. Indeed, if α < p <∞ then by Karamata’s
theorem (see Bingham et al. [13]) and since nP(|X0| > xn)→ 0,

E[‖x−1
n X[1,n]

ε
|pp] = nE[|x−1

n X
ε
|p] = o(1) , n→∞ .

Also, if p < α, then E[|X|p] <∞. If we also have n/xpn → 0 then

E[‖x−1
n X[1,n]

ε
‖pp] ≤ nx−pn E[|X|p]→ 0 , n→∞ .

If p = α, E[|X|α] < ∞ and n/xαn → 0 then the latter relation remains valid. If E[|X|α] = ∞ then
E[|x−1

n X
ε
|α] = x−αn `(xn) for some slowly varying function ` depending on ε, hence for any small

κ > 0 and large n, `(xn) ≤ xκn. Then the condition nx−α+κ
n → 0 also implies that E[‖x−1

n X[1,n]

ε
‖αα] =

o(1). Thus we retrieve CSp as used in Theorem 2.2.1. In sum, under the aforementioned additional
growth conditions on (xn), if (2.5.2) holds then it holds without the centering term holds too as is
the case for condition CSp written in Theorem 2.2.1.

We mentioned that conditions of a similar type as CSp are standard when dealing with sum
functionals acting on (Xt) (see for example Davis and Hsing [40], Bartkiewicz et al. [5], Mikosch
and Wintenberger [121, 122, 123]), and are also discussed in Kulik and Soulier [108].

Remark 2.5.1. Assume α < p < ∞. Then by an applications of Markov’s inequality of order 1

and Karamata’s theorem yield for δ > 0, as n→∞,

P
(
‖x−1

n X[1,n]

ε
‖pp > δ

)
nP(|X0| > xn)

=
P
(∑n

t=1 |x
−1
n Xt

ε
|p > δ

)
nP(|X0| > xn)

≤ E[|x−1
n X0

ε
|p]

δ P(|X0| > εxn)

P(|X0| > εxn)

P(|X0| > xn)
→ c εp−α .

The right-hand side converges to zero as ε → 0. Here and in what follows, c denotes any positive
constant whose value is not of interest. We conclude that (2.5.2) is automatic for p > α.

Remark 2.5.2. Condition CSp is challenging to check for p ≤ α. For p/α ∈ (1/2, 1], by Čebyshev’s
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inequality,

P
(∣∣∥∥x−1

n X[1,n]

ε∥∥p
p
− E[

∥∥x−1
n X[1,n]

ε∥∥p
p
]
∣∣ > δ

)
/[nP(|X0| > xn)]

≤ δ−2var
(∥∥x−1

n X[1,n]

ε∥∥p
p

)
/[nP(|X0| > xn)]

≤ δ−2E[|x−1
n X0

ε
|2p
]

P(|X0| > xn)

[
1 + 2

n−1∑
h=1

| corr
(
|x−1
n X0

ε
|p, |x−1

n Xh

ε
|p
)
|
]
.

Now assume that (Xt) is ρ-mixing with summable rate function (ρh); cf. Bradley [14]. Then the
right-hand side is bounded by

δ−2 E[|x−1
n X

ε
|2p
]

P(|X0| > xn)

[
1 + 2

∞∑
h=1

ρh

]
∼ δ−2ε2p−α

[
1 + 2

∞∑
h=1

ρh

]
, ε→ 0 ,

where we applied Karamata’s theorem in the last step, and CSp follows. For Markov chains weaker
assumptions such as the drift condition (DC) in Mikosch and Wintenberger [122, 123] can be used
for checking CSp.

Remark 2.5.3. Condition CSp not only restricts the serial dependence of the time series (Xt)

but also the level of thresholds (xn). Indeed for p/α < 1/2 and (X′t) iid, since
(
‖n−1/2X′[1,n]‖

p
p −

E[‖n−1/2X′[1,n]‖
p
p]
)
converges in distribution to a Gaussian limit by virtue of the central limit theorem,

CSp implies necessarily that xn/
√
n→∞ as nP(|X0| > xn)→ 0.

2.5.3 Threshold condition

In Theorem 2.2.1 we assume growth conditions on (xn): n/xpn → 0 if p < α and n/xα−κn → 0

for some κ > 0 if p = α.
For inference purposes it is tempting to decrease the threshold level xn such that more ex-

ceedances are included in the estimators. Indeed, the assumptions on (xn) can be relaxed, justified
by results such as Nagaev’s large deviation principle in [124], by adding a centering term as we will
show in Lemma 2.5.4. However, in this section we aim at pointing at the difficulties that might
arise while doing so in practice.

To motivate the results of this section we start by considering an iid sequence (Xt) satisfying
RVα for some α > 0. Then, for p > α, (2.2.3) holds with limit c(p) = 1 and S

(p)
n =

∑n
t=1 |Xi|p

has infinite expectation. If p < α the process (S
(p)
n ) has finite expectation and by the law of large

numbers, for n/xpn → 0,

P
(
‖X[0,n]‖p > xn (nx−pn E[|X|p] + 1)1/p

)
= P

(
S(p)
n − E[S(p)

n ] > xpn(1 + o(1))
)
→ 0 . (2.5.3)
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Following Nagaev [124], a large deviation result for the centered process holds:

P
(
S(p)
n − E[S(p)

n ] > xpn

)
∼ nP(|X0| > xn) , n→∞ ,

provided n/xα−κn → 0 for p/α ∈ (1/2, 1) and some κ > 0, and
√
n log n/xpn → 0 for p/α < 1/2.

These conditions are satisfied for extreme thresholds satisfying n/xpn → 0: in this case the centering
term E[S

(p)
n ] in (2.5.3) is always negligible which allows us to derive (2.2.3). Next, we extend the

previous ideas to regularly varying time series.

Lemma 2.5.4. Consider an Rd-valued stationary process (Xt) satisfying the conditions RVα, AC,
CSp and c(p) <∞ for some p > 0. If p < α then

lim
n→∞

P
(
‖X[0,n]‖p > xn

(
nx−pn E[|X|p] + 1

)1/p)
nP(|X0| > xn)

= c(p) . (2.5.4)

If p = α then

lim
n→∞

P
(
‖X[0,n]‖α > xn

(
nE[|X/xn

1|α] + 1
)1/α)

nP(|X0| > xn)
= c(α) = 1 . (2.5.5)

Moreover, if also E[|X|α] <∞ then equation (2.5.4) holds for p = α.

The proof is given in Section 2.7.2. Now the restrictions on the level of the thresholds (xn) are
the ones implicitly implied by condition CSp in (2.5.2); see Remark 2.5.3.

We define an auxiliary sequence of levels:

zn := zn(p) =


xn
(
nx−pn E[|X|p] + 1

)1/p if p < α,

xn
(
nE[|X/xn

1|α] + 1
)1/α if p = α ,

xn if p > α .

For thresholds satisfying the growth conditions n/xpn → 0 we have zn ∼ xn, while for moderate
thresholds verifying CSp and n/xpn →∞ this is no longer the case.

For the purposes of inference Lemma 2.5.4 is not as satisfactory as (2.2.3) in Theorem 2.2.1.
Indeed, the level zn in the selection of the exceedances is not the original threshold xn. For any
moderate threshold xn with zn/xn → ∞ the use of xn instead of zn might include a bias. As a
toy example, consider the problem of inferring the constant c(q)/c(p) for p < α, q > p. Then an
application of Lemma 2.5.4 ensures that

P(‖X[0,n]‖q > zn(q) | ‖X[0,n]‖p > zn(p))

→ P(‖YQ(p)‖q > 1) = E[‖Q(p)‖αq ] = c(q)/c(p), n→∞ .
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However, choosing moderate thresholds (xn), we would have

P(‖X[0,n]‖q > xn | ‖X[0,n]‖p > xn) ∼
P(‖X[0,n]‖q > xn)

P(n1/pE[|X|p]1/p > xn)

→

1 if q < α,

0 if q > α, n→∞ .

By this argument, the assumption n/x
p∧(α−κ)
n → 0 is justified to simplify inference procedures.

Otherwise, the choice of the threshold sequence becomes complicated.

2.6 Inference beyond shift-invariant functionals

So far we only considered inference for shift-invariant functionals acting on (˜̀p, d̃p) such as
maxima and sums. Following the shift-projection ideas in Janssen [96], jointly with continuous
mapping arguments, we extend inference to functionals on (`p, dp).

2.6.1 Inference for cluster functionals in (`p, dp)

Let g : (`p, dp)→ R be a bounded measurable function. We define the functional ψg : (˜̀p, d̃p)→
R by

[z] 7→ ψg([z]) :=
∑
j∈Z
|z∗−j |αg

(
(Bjz∗t )t∈Z

)
, (2.6.1)

where z∗t := zt−T ∗(z), for t ∈ Z, such that T ∗(z) := inf{s ∈ Z : |zs| = ‖z‖∞} and B : `p → `p is the
backward-shift map.

We link the distribution of the spectral cluster process Q(α) and the distribution of the class
[Q(α)] through the mappings (2.6.1) in the next proposition whose proof is given in Section 2.7.5.

Proposition 2.6.1. The following relation holds for any real-valued bounded measurable function
g on `α

E[g(Q(α))] = E[ψg([Q
(α)])] .

where ψg is as in (2.6.1). This relation remains valid if α is replaced by p, whenever the spectral
cluster process in `p is well defined.

For p ≤ α the mappings in (2.6.1) are continuous functionals on (˜̀p, d̃p) and we can extend
Theorem 2.4.1 to continuous functionals on (`p, dp) evaluated at the spectral cluster process Q(p).

Theorem 2.6.2. Assume the conditions of Theorem 2.4.1 for p ≤ α. Then for any continuous
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bounded function g : `p ∩ {x : ‖x‖p = 1, |x0| > 0} → R,

ĝ(p) :=
1

k

m∑
t=1

b∑
j=1

Wj,t(p) g
(Bj−1Bt

‖Bt‖p

)
︸ ︷︷ ︸

=:ψg(Bt/‖Bt‖p)

11(‖Bt‖p > ‖B‖p,(k)) (2.6.2)

P−→ E[g(Q(p))] , n→∞ ,

where Wj,t(p) = |X(t−1)b+j |α/‖Bt‖αp for all 1 ≤ j ≤ b.

The proof is given in Section 2.7.5.

2.6.2 Applications

Examples of non-shift-invariant functionals on (`p, dp) are measures of serial dependence, prob-
abilities of large deviations such as the supremum of a random walk and ruin probabilities, and
functionals of the spectral tail process Θ. We study these examples in the remainder of this section.

Measures of serial dependence

Define gh(xt) = |xh|α
x>0
|x0|

xh
|xh| . Then the following result is straightforward from Theorem 2.6.2.

Corollary 2.6.3. Assume the conditions of Theorem 2.6.2 for p = α. Then

ĝ
(α)
h :=

1

k

m∑
t=1

b−h∑
j=1

Wj,tWj+h,t

X>j,t
|Xj,t|

Xj+h,t

|Xj+h,t|︸ ︷︷ ︸
=:ψgh (Bt)

11(‖Bt‖α > ‖B‖α,(k)).

P−→ E[gh(Q(a))], n→ +∞,

where the weights Wj,t = Wj,t(α) are defined in Theorem 2.6.2, satisfying
∑b

j=1Wj,t = 1, and
Xj,t := X(t−1)b+j for 1 ≤ j ≤ b.

The function gh gives a summary of the magnitude and direction of the time series h lags after
recording a high-level exceedance of the norm, and satisfies the relation

∑
h∈Z E[gh(Q(α))] = 1.

Example 2.6.4. Let (Xt) be a linear process satisfying the assumptions in Example 2.4.3, then

E[gh(Q(α))] =

∑
t∈Z |ϕt|α|ϕt+h|αsign(ϕt)sign(ϕt+h)(

‖ϕ‖αα
)2 , h ∈ Z .

This function is proportional to the autocovariance function of a finite variance linear process with
coefficients (|ϕt|α sign(ϕt)). In particular, for α = 1 it is proportional to the autocovariance function
of a finite variance linear process with coefficients (ϕt).
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Large deviations for the supremum of a random walk

We start by reviewing Theorem 4.5 in Mikosch and Wintenberger [123]; the proof is given in
Section 2.7.5.

Proposition 2.6.5. Consider a univariate stationary sequence (Xt) satisfying RVα for some α ≥ 1,
AC, CS1, and c(1) <∞. Then for all p ≥ 1,

∣∣∣ P(sup1≤t≤n St > xn)

nP(|X| > xn)

− c(p)E
[

lim
s→∞

(
supt≥−s

∑t
i=−sQ

(p)
i

)α
+

] ∣∣∣→ 0, n→∞. (2.6.3)

If α ≥ 1, then ‖Q(1)‖αα ≤ ‖Q(1)‖α1 = 1 and a consistent estimator of c(1) = 1/E[‖Q(1)‖αα] was
suggested in Corollary 2.4.3. A consistent estimator of the term in (2.6.3) is given next.

Corollary 2.6.6. Assume the conditions of Theorem 2.6.2 for p = 1. Then

∣∣∣∑m
t=1

(
sup1≤j≤b

Xt,j
‖Bt‖1

)α
+

11(‖Bt‖1 > ‖B‖1,(k))∑m
t=1

‖Bt‖αα
‖Bt‖α1

11(‖Bt‖1 > ‖B‖1,(k))

− c(1)E
[

lim
s→∞

(
supt≥−s

∑t
i=−sQ

(1)
i

)α
+

]∣∣∣ P−→ 0 , n→∞ ,

where Xt,j := X(t−1)b+j, for 1 ≤ j ≤ b, 1 ≤ t ≤ m.

Following the same ideas and using Theorem 4.9 in [123], one can also derive a consistent
estimator for the constant in the related ruin problem.

Application: a cluster-based method for inferring on (Θt)

Exploiting the relation (Q
(α)
t )/|Q(α)

0 |
d
= (Θt) discussed in Section 2.3.1, we propose cluster-based

estimation methods for the spectral tail process.
Cluster-based approaches with the goal to improve inference on Θ1 for Markov chains were

considered in Drees et al. [53]; see also Davis et al. [39], Drees et al. [50] for related cluster-based
procedures on (Θt)|t|≤h for fixed h ≥ 0. Our approach can be seen as an extension for inference on
the `α-valued sequence (Θt).

Consider the continuous re-normalization function ζ(x) = x/|x0| on {x ∈ `α : |x0| > 0}. We
derive the following result from Theorem 2.6.2; the proof is given in Section 2.7.5.

Proposition 2.6.7. Assume the conditions of Theorem 2.6.2 for p = α. Let ρ : (`α, dα)→ R be a
homogeneous continuous function and ρζ(x) := (ρα ∧ 1) ◦ ζ(x). Then

ρ̂ζ
(α) :=

1

k

m∑
t=1

ψρζ (Bt) 11(‖Bt‖p > ‖B‖p,(k))
P−→ P

(
ρ(Y Θ) > 1) , n→∞ ,

where ψρζ (Bt) is defined in (2.6.2) and the Pareto(α) random variable Y is independent of Θ.
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Classical examples of such functionals are ρ(x) = maxi≥0,j≥i(xi − xj)+, functionals related
to large deviations such as ρ(x) = supt≥0(

∑t
i=0 xi)+, or measures of serial dependence such as

ρ(x) = |xh|.

2.7 Proofs

2.7.1 Proof of Theorem 2.2.1

Recall the properties of the sequence (xn) from Section 2.5, in particular nP(|X0| > xn) → 0.
The main result in Theorem 2.2.1 follows by applications of Lemma 2.7.1 and Proposition 2.7.2
below; their proofs are given at the end of this section.

Lemma 2.7.1. Consider an Rd-valued stationary time series (Xt) satisfying the conditions RVα,
AC, CSp. If p < α, assume also also n/xpn → 0 and if p = α also n/xα−κn → 0 for some κ > 0.
Then the following relation holds

lim
n→∞

P(‖X[0,n]‖p > xn)

nP(|X0| > xn)
= c(p) , (2.7.1)

where c(p) is given in (2.3.2).

We recall from Remark 2.5.1 that (2.5.2) in CSp is always satisfied for p > α. Moreover, for
p ≤ α, under the growth conditions on (xn) in Theorem 2.2.1, centering with the expectation in
(2.5.2) is not necessary.

Proposition 2.7.2. Assume the conditions of Lemma 2.7.1. Then,

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖p > xn)

w−→ P(YQ(p) ∈ ·), n→∞ ,

(2.7.2)

in the space (˜̀p, d̃p) where the Pareto(α) random variable Y and Q(p) are independent.

Proof of Lemma 2.7.1

Choose some ε > 0, δ ∈ (0, 1). Since ‖a−1
n X[0,n]‖

p
p is a sum of non-negative random variables we

have the following bounds via truncation

P
(
‖x−1

n X[0,n]
ε
‖pp > 1) ≤ P(‖x−1

n X[0,n]‖pp > 1
)

≤ P
(
‖x−1

n X[0,n]
ε
‖pp > (1− δp)

)
+ P

(
‖x−1

n X[0,n]

ε
‖pp > δp

)
. (2.7.3)

By CSp and in view of Remark 2.5.1 we have

lim
ε↓0

lim sup
n→∞

P
(
‖x−1

n X[0,n]

ε
‖pp > δp

)
/(nP(|X0| > xn)) = 0 . (2.7.4)
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Now, for any choice of u > 0, it remains to determine the limits of the terms P
(
‖x−1

n X[0,n]
ε
‖pp >

u)/(nP(|X0| > xn)). We start with a telescoping sum representation

P(‖x−1
n X[0,n]

ε
‖pp > u)− P(|x−1

n X0ε
|pp > u)

=
∑n

i=1

(
P(‖x−1

n X[0,i]
ε
‖pp > u)− P(‖x−1

n X[0,i−1]
ε
‖pp > u)

)
=

∑n
i=1E

[(
11(‖x−1

n X[0,i]
ε
‖pp > u)− 11(‖x−1

n X[1,i]
ε
‖pp > u)

)
11(|X0| > εxn)

]
,

where we used stationarity in the last step and the fact that the difference of the indicator functions
vanishes on {|X0| ≤ εxn}. We also observe that the second term on the left-hand side is of the
order o(nP(|X0| > xn)). For any fixed k write Ak = {maxk≤t≤n |Xt| > εxn}. Regular variation of
(Xt) ensures that, as n→∞,

P(‖x−1
n X[0,n]

ε
‖pp > u)

nP(|X0| > xn)

∼ ε−α
1

n

n∑
i=1

E
[
11(‖x−1

n X[0,i]
ε
‖pp > u)− 11(‖x−1

n X[1,i]
ε
‖pp > u)

∣∣ |X0| > εxn
]

∼ ε−αE
[(

11(‖x−1
n X[0,k−1]

ε
‖pp > u)− 11(‖x−1

n X[1,k−1]
ε
‖pp > u)

)
×11(Ack)

∣∣ |X0| > εxn
]

+ ε−αO
(
P(Ak | |X0| > εxn)

)
,

where the second term vanishes, first letting n → ∞ and then k → ∞, by virtue of AC. Now the
regular variation property of (Xt) implies that

lim
n→∞

P(‖x−1
n X[0,n]

ε
‖pp > u)

nP(|X0| > xn)

= lim
k→∞

ε−α
(
P
(∑k−1

t=0 |ε YΘt|p11(|YΘt| > 1) > u
)

−P
(∑k−1

t=1 |εYΘt|p11(|YΘt| > 1) > u)
))
,

by a change of variable this term equals

= lim
k→∞

E
[∫∞
ε

(
11
(∑k−1

t=0 |yΘt|p11(|yΘt| > ε) > u
)

−11
(∑k−1

t=1 |yΘt|p11(|yΘt| > ε) > u
))
d(−y−α)

]
= lim

k→∞
E
[∫∞

0

(
11
(
‖yΘ[0,k−1]

ε
‖pp > u

)
− 11

(
‖yΘ[1,k−1]

ε
‖pp > u

))
d(−y−α)

]
.

In the last step we used the fact that the integrand vanishes for 0 ≤ y ≤ ε. The integrand is
non-negative and bounded by 11(y > ε) which is integrable. Thus we may take the limit as k →∞
inside the integral to derive the quantity

E
[∫∞

0

(
11
(
‖yΘ[0,∞]

ε
‖pp > u

)
− 11

(
‖yΘ[1,∞]

ε
‖pp > u

))
d(−y−α)

]
.
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By monotone convergence as ε ↓ 0 we get the limit

u−α/pE
[
‖Θ[0,∞]‖αp − ‖Θ[1,∞]‖αp

]
= u−α/p c(p) ; (2.7.5)

see (2.3.6). Now an appeal to (2.7.3) with u = 1 and u = 1− δp yields

c(p) ≤ lim inf
n→∞

P(‖x−1
n X[0,n]‖

p
p > 1

)
nP(|X0| > xn)

≤ lim sup
n→∞

P(‖x−1
n X[0,n]‖

p
p > 1

)
nP(|X0| > xn)

≤ (1− δp)−α/p c(p) .

The limit relation (2.7.1) follows as δ ↓ 0.

Proof of Proposition 2.7.2

Consider any bounded Lipschitz-continuous function f : ( ˜̀p, d̃p)→ R. The statement is proved
if we can show that

lim
n→∞

E[f(x−1
n X[0,n]) | ‖X[0,n]‖p > xn]

= c(p)−1E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
.

In view of Lemma 2.7.1 it suffices to show

lim
n→∞

E[f(x−1
n X[0,n]) 11(‖X[0,n]‖p > xn)]

nP(|X0| > xn)

= E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
.

In these limit relations we may replace f(x−1
n X[0,n]) by f(x−1

n X[0,n]
ε
) since by (2.7.4) for any δ > 0,

some Kf > 0,

lim
ε↓0

lim sup
n→∞

P
(
|f(x−1

n X[0,n])− f(x−1
n X[0,n]

ε
)| > δ , ‖X[0,n]‖p > xn

)
nP(|X0| > xn)

≤ lim
ε↓0

lim sup
n→∞

P
(
Kf dp(x

−1
n X[0,n]

ε
,0) > δ

)
nP(|X0| > xn)

≤ lim
ε↓0

lim sup
n→∞

P
(
Kf

∥∥x−1
n X[0,n]

ε∥∥p
p
> δ(p)

)
nP(|X0| > xn)

= 0 ,
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where δ(p) = δp for p ≥ 1 and = δ for p ∈ (0, 1). We also have for δ ∈ (0, 1),

Gn,ε =
E
[
f
(
x−1
n X[0,n]

ε

) ∣∣11(‖x−1
n X[0,n]‖p > 1

)
− 11

(
‖x−1

n X[0,n]
ε
‖p > 1

)∣∣]
nP(|X0| > xn)

≤ c
P(
∥∥x−1

n X[0,n]‖p > 1 ≥ ‖x−1
n X[0,n]

ε
‖p
)

nP(|X0| > xn)

≤ c
P
(
‖x−1

n X[0,n]

ε
‖p > δ

)
nP(|X0| > xn)

+ c
P
(
1 ≥ ‖x−1

n X[0,n]
ε
‖p > 1− δ

)
nP(|X0| > xn)

= G
(1)
n,ε,δ +G

(2)
n,ε,δ .

Applying (2.7.4) to G(1)
n,ε,δ and using the calculations in the proof of Lemma 2.7.1 leading to (2.7.5)

for G(2)
n,ε,δ, we conclude that

lim
ε↓0

lim sup
n→∞

Gn,ε ≤ lim
ε↓0

lim sup
n→∞

G
(1)
n,ε,δ + lim

ε↓0
lim sup
n→∞

G
(2)
n,ε,δ

= 0 + c
(
(1− δ)−α/p − 1

)
↓ 0 , δ ↓ 0 .

Thus it suffices to show

lim
ε↓0

lim
n→∞

E
[
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)]
nP(|X0| > xn)

= E
[
‖Θ/‖Θ‖α‖αp f

(
Y Θ/‖Θ‖p

)]
. (2.7.6)

This is the goal of the remaining proof.
Choose any ε > 0. Noticing that x−1

n X[0,n]
ε

= x−1
n X[1,n]

ε
on {|x−1

n X0| ≤ ε}, we have

I := E
[
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)]
= E

[(
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)
−f
(
(0, x−1

n X[1,n]
ε
)
)

11
(
‖x−1

n X[1,n]
ε
‖p > 1

))
11(|X0| > εxn

)]
+E
[
f((0, x−1

n X[1,n]
ε
)) 11

(
‖x−1

n X[1,n]
ε
‖p > 1

)]
= E

[(
f
(
x−1
n X[0,n]

ε

)
11
(
‖x−1

n X[0,n]
ε
‖p > 1

)
−f
(
(0, x−1

n X[1,n]
ε
)
)

11
(
‖x−1

n X[1,n]
ε
‖p > 1

))
11(|X0| > εxn

)]
+E
[
f
(
(0, x−1

n X[0,n−1]
ε
)
)

11
(
‖x−1

n X[0,n−1]
ε
‖p > 1

)]
.
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where we used the stationarity in the last step. Using the same idea recursively, we obtain

I =
∑n

j=1E
[(
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
‖x−1

n X[0,j]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
‖x−1

n X[1,j]
ε
‖p > 1

))
11(|X0| > εxn)

]
+E
[
f
(
(0n, x−1

n X0ε
)
)

11
(
|X0| > εxn

)]
,

where 0k := {0}k for k ≥ 1. By regular variation ofX0 the last right-hand term is o(nP(|X0| > xn)).
Therefore by regular variation of (Xt) we obtain as n→∞,

I/
(
nP(|X0| > xn)

)
∼ ε−α

n

∑n
j=1E

[
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
‖x−1

n X[0,j]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
‖x−1

n X[1,j]
ε
‖p > 1

) ∣∣ |X0| > εxn
]

=: II .

Write Ak = {‖X[k,n]‖∞ > εxn} for fixed k ≥ 1. By AC, P(Ak | |X0| > εxn) vanishes by first
letting n → ∞ then k → ∞. Since each of the summands in II is uniformly bounded in absolute
value we may restrict the summation to j ∈ {k − 1, . . . , n} for any fixed k ≥ 1. Therefore we have
as n→∞,

II −O
(
P(Ak | |X0| > εxn)

)
∼ ε−α

n

n∑
j=k−1

E
[(
f
(
(0n−j , x−1

n X[0,j]
ε
)
)

11
(
{‖x−1

n X[0,j]
ε
‖p > 1}

)
−f
(
(0n−j+1, x−1

n X[1,j]
ε
)
)

11
(
{‖x−1

n X[1,j]
ε
‖p > 1}

))
11(Ack)

∣∣ |X0| > εxn
]

=
ε−α

n

n∑
j=k−1

E
[
f
(
(0n−j , x−1

n X[0,k−1]
ε
,0j−k)

)
11
(
‖x−1

n X[0,k−1]
ε
‖p > 1

)
−f
(
(0n−j+1, x−1

n X[1,k−1]
ε
,0j−k)

)
11
(
‖x−1

n X[1,k−1]
ε
‖p > 1

) ∣∣ |X0| > εxn
]
.

Next we apply shift-invariance and regular variation in ˜̀p:

∼ ε−αE
[
f
(
x−1
n X[0,k−1]

ε

)
11
(
‖x−1

n X[0,k−1]
ε
‖p > 1

)
−f
(
x−1
n X[1,k−1]

ε

)
11
(
‖x−1

n X[1,k−1]
ε
‖p > 1

) ∣∣ |X0| > εxn
]

→ ε−αE
[
f
(
ε Y Θ[0,k−1]

ε

)
11
(
‖εY Θ[0,k−1]

ε
‖p > 1

)
−f
(
ε YΘ[1,k−1]

ε

)
11
(
‖εY[1,k−1]

ε
‖p > 1

)]
= E

[
f
(
ε Y Θ[0,k−1]

1

)
11
(
‖εY[0,k−1]

1
‖p > 1

)
−f
(
εY[1,k−1]

1

)
11
(
ε ‖YΘ[1,k−1]

1
‖p > 1

)]
=: Jk,ε .
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By Proposition 2.3.2 we have ‖Θ‖α <∞ a.s., |Θt|
a.s.−→ 0 as |t| → ∞, hence T := inft≥0{t : Y |Θt| <

1} <∞ a.s. Then by monotone convergence as k →∞,

Jk,ε = ε−αE
[(
f
(
ε YΘ[0,∞]

1

)
11
(
‖ε Y Θ[0,∞]

1
‖p > 1

)
−f
(
ε Y Θ[1,∞]

1

)
11
(
‖ε Y Θ[1,∞]

1
‖p > 1

))
11(T < k)

]
+O(P(T ≥ k))

→ ε−αE
[
f
(
ε YΘ[0,∞]

1

)
11
(
‖ε Y Θ[0,∞]

1
‖p > 1

)
−f
(
ε Y Θ[1,∞]

1

)
11
(
‖ε Y Θ[1,∞]

1
‖p > 1

)]
=

∫ ∞
0

E
[
f
(
yΘ[0,∞]

ε

)
11
(
‖yΘ[0,∞]

ε
‖p > 1

)
−f
(
yΘ[1,∞]

ε

)
11
(
‖yΘ[1,∞]

ε
‖p > 1

)]
d(−y−α) =: Jε .

In the last step we changed variables, u = εy, and observed that the integrand vanishes for y < ε.
Finally, we want to let ε ↓ 0. We start by inter-changing expectation and integral in Jε, and

change variables, u = y‖Θ[0,∞]‖α, in the first term of the integrand and then proceed similarly for
the second term with the convention that it is zero on {‖Θ[1,∞]‖α = 0}:

Jε = E
[ ∫ ∞

0

(
‖Θ[0,∞]‖αα f

(
yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)

−‖Θ[1,∞]‖αα f
(

yΘ[1,∞]

‖Θ[1,∞]‖α
ε

)
11
(∥∥ yΘ[1,∞]

‖Θ[1,∞]‖α
ε

∥∥
p
> 1
))

d(−y−α)
]

=
∞∑
t=1

∫ ∞
0

E
[
|Θt|α

(
f
(

yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)

−f
(

yΘ[1,∞]

‖Θ[1,∞]‖α
ε

)
11
(∥∥ yΘ[1,∞]

‖Θ[1,∞]‖α
ε

∥∥
p
> 1
))]

d(−y−α)

+E
[ ∫ ∞

0
f

(
yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11

(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1

)
d(−y−α)

]
.

Next we apply the time-change formula (2.3.5) to each summand.

Jε =
∞∑
t=1

∫ ∞
0

E
[
f
(

yΘ[−t,∞]

‖Θ[−t,∞]‖α
ε

)
11
(∥∥ yΘ[−t,∞]

‖Θ[−t,∞]‖α
ε

∥∥
p
> 1
)

−f
(

yΘ[1−t,∞]

‖Θ[1−t,∞]‖α
ε

)
11
(∥∥ yΘ[1−t,∞]

‖Θ[1−t,∞]‖α
ε

∥∥
p
> 1
)]
d(−y−α)

+E
[ ∫ ∞

0
f
(

yΘ[0,∞]

‖Θ[0,∞]‖α
ε

)
11
(∥∥ yΘ[0,∞]

‖Θ[0,∞]‖α
ε

∥∥
p
> 1
)
d(−y−α)

]
.

This is a telescoping sum in t with value

Jε = E
[ ∫ ∞

0
f
(

yΘ
‖Θ‖α ε

)
11
(∥∥ yΘ
‖Θ‖α ε

∥∥
p
> 1
)
d(−y−α)

]
.
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By monotone convergence we have

lim
ε↓0

Jε = E
[ ∫ ∞

0
f
(
y Θ
‖Θ‖α

)
11
(∥∥y Θ

‖Θ‖α

∥∥
p
> 1
)
d(−y−α)

]
. (2.7.7)

Combining the arguments above, we proved (2.7.6) as desired.

2.7.2 Proof of Lemma 2.5.4

The case p < α. Choose some ε > 0, δ ∈ (0, 1). We have the following bounds via truncation

I1 − I2 := P
(
‖x−1

n X[0,n]
ε
‖pp − E

[
‖x−1

n X[0,n]
ε
‖pp
]
> 1 + δp

)
−P
(
‖x−1

n X[0,n]

ε
‖pp − E

[
‖x−1

n X[0,n]

ε
‖pp
]
≤ −δp

)
≤ P(‖x−1

n X[0,n]‖pp − E
[
‖x−1

n X[0,n]‖pp
]
> 1
)

≤ P
(
‖x−1

n X[0,n]
ε
‖pp − E

[
‖x−1

n X[0,n]
ε
‖pp
]
> 1− δp

)
+P
(
‖x−1

n X[0,n]

ε
‖pp − E

[
‖x−1

n X[0,n]

ε
‖pp
]
> δp

)
=: I3 + I4 .

Taking into account CSp for p < α, we have

lim
ε↓0

lim sup
n→∞

(I2 + I4)/(nP(|X0| > xn)) = 0.

Moreover, we observe that by Karamata’s theorem for p < α

E
[
‖x−1

n X[0,n]
ε
‖pp
]

= nE
[
|X0/xn|p 11(|X0| > εxn)

]
= O

(
nP(|X0| > εxn)

)
= o(1) .

Thus centering in I1 and I3 is not needed, and one can follow the lines of the proof of Lemma 2.7.1
to conclude.

The case p = α. It requires only slight changes; we omit details.

2.7.3 Proofs of the results of Section 2.3

Proof of Proposition 2.3.1

The representation (2.3.1) follows by identifying limε↓0 Jε as on the right-hand side of (2.7.7).
In particular, taking f as the constant map (xt) 7→ 1 in (2.3.1) we obtain the representation of the
constant c(p) in (2.3.2).

Proof of Proposition 2.3.3

Our goal is first to relate the sequence of spectral components (Q(p)(h))h≥0 to (Θt). We start
with two auxiliary results whose proofs are given at the end of this section.
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Lemma 2.7.3. Let (Xt) be a stationary time series satisfying RVα. Then for h ≥ 0,

P(Q(p)(h) ∈ ·) =
1

c(p, h)

h∑
k=0

E
[‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

11
(

Θ−k+[0,h]

‖Θ−k+[0,h]‖p
∈ ·
)]
,

(2.7.8)

where c(p, h) :=
∑h

k=0 E[‖Θ−k+[0,h]‖αp /‖Θ−k+[0,h]‖αα]. In particular, c(α, h) = h+ 1 and

P(Q(α)(h) ∈ ·) = P
(
Θ−U(h)+[0,h]/‖Θ−U(h)+[0,h]‖α ∈ ·

)
, (2.7.9)

where U (h) is uniformly distributed on {0, . . . , h} and independent of Θ.

Lemma 2.7.4. Assume |Θt| → 0 as t→∞ and let f : ˜̀α∩{x : ‖x‖p = 1} → (0,∞) be any bounded
Lipschitz-continuous function in (˜̀α, d̃α). Then, for every p ≥ α,

c(p,h)
h+1 E[f(Q(p)(h))]→ E[‖Θ/‖Θ‖α‖αp f(Θ/‖Θ‖p)] , (2.7.10)

as h→ +∞

We conclude from (2.7.10) for f(x) ≡ 1 that limh→∞ c(p, h)/(h+ 1) = c(p). If 0 < c(p) <∞,

lim
h→∞

E[f(Q(p)(h))] = c(p)−1 E[‖Θ/‖Θ‖α‖αp f(Θ/‖Θ‖p)]. (2.7.11)

Finally, the portmanteau theorem yields Q(p)(h)
d−→ Q(p)(∞) in (˜̀p ∩ {x : ‖x‖p = 1}, d̃p) where

Q(p)(∞) is well defined in view of the right-hand side of (2.7.11). This finishes the proof of the
proposition.

Proof of Lemma 2.7.3. If ‖X[0,h]/x‖p > 1 then for sufficiently small ε > 0, ‖X[0,h]/x‖∞ > ε. There-
fore, on {‖X[0,h]/x‖p > 1},

h∑
i=0

|Xi/x|α 11
(
|Xi/x| > ε

)
> 0 .

Using stationarity, we obtain

P(‖X[0,h]/x‖p > 1)

=

h∑
i=0

E
[ |Xi/x|α11

(
|Xi/x| > ε

)∑h
t=0 |Xt/x|α 11

(
|Xt/x| > ε

)11(‖X[0,h]/x‖p > 1)
]

=
h∑
i=0

E
[ |X0/x|α11

(
|X0/x| > ε

)∑h−i
t=−i |Xt/x|α 11

(
|Xt/x| > ε

)11(‖X[−i,h−i]/x‖p > 1)
]

= P(|X0| > xε)

h∑
i=0

E
[ |X0/x|α11(‖X[−i,h−i]/x‖p > 1)∑h−i

t=−i |Xt/x|α 11
(
|Xt/x| > ε

) ∣∣∣ |X0| > xε
]
.
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Applying the definition (2.2.1) of regular variation and dominated convergence, we obtain as x→∞,

P(‖X[0,h]/x‖p > 1)

P(|X0| > x)
→ ε−α

h∑
i=0

E
[ |εY Θ0|α11(‖εY Θ[−i,h−i]‖p > 1)∑h−i

t=−i |εY Θt|α 11
(
|Y Θt| > 1

) ]
=

h∑
i=0

∫ ∞
ε

E
[ 11(y ‖Θ[−i,h−i]‖p > 1)∑h−i

t=−i |Θt|α 11
(
y |Θt| > ε

)] d(−y−α) .

The left-hand side does not depend on ε. Therefore, letting ε ↓ 0, we arrive at

lim
x→∞

P(‖X[0,h]/x‖p > 1)

P(|X0| > x)
=

h∑
i=0

∫ ∞
0

E
[11(y ‖Θ[−i,h−i]‖p > 1)

‖Θ[−i,h−i]‖αα

]
d(−y−α)

=
h∑
i=0

E
[ ‖Θ−i+[0,h]‖αp
‖Θ−i+[0,h]‖αα

]
= c(p, h) . (2.7.12)

This constant is finite since ‖Θi+[0,h]‖p ≤ (h+ 1)‖Θi+[0,h]‖∞.
Next we prove (2.7.8). For this reason, let A be a continuity set with respect to the limit law in

(2.7.8). An appeal to (2.7.12) yields

c(p, h)P(x−1X[0,h] ∈ A | ‖X[0,h]‖p > x)

∼
P(x−1X[0,h] ∈ A , ‖X[0,h]‖p > x)

P(|X0| > x)
=: I(x) .

Proceeding as for the derivation of (2.7.12), we obtain

I(x) ∼
∫ ∞

0

h∑
i=0

E
[11(y ‖Θ[−i,h−i]‖p > 1)

‖Θ[−i,h−i]‖αα
11(yΘ[−i,h−i] ∈ A)

]
d(−y−α)

=

∫ ∞
1

h∑
i=0

E
[‖Θ[−i,h−i]‖αp
‖Θ[−i,h−i]‖αα

11
(
y

Θ[−i,h−i]

‖Θ[−i,h−i]‖p
∈ A

)]
d(−y−α) .

In the last step we changed the variable, u = y ‖Θ[−i,h−i]‖p > 0 a.s., observing that ‖Θ[−i,h−i]‖p ≥
|Θ0| = 1. This proves (2.7.8) and the lemma.

Proof of Lemma 2.7.4. Assume f : ˜̀α ∩ {x : ‖x‖p = 1} → (0,∞) is any bounded Lipschitz-
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continuous function in (˜̀α, d̃α). By Lemma 2.7.3 we have for all p ≥ α,

c(p, h)

h+ 1
E[f(Q(p)(h))]− c(p)E[f(Q(p))] =

=
1

h+ 1

h∑
k=0

E
[(‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

−
‖Θ‖αp
‖Θ‖αα

)
f(Θ−k+[0,h]/‖Θ−k+[0,h]‖p)

]
+

+ E
[‖Θ‖αp
‖Θ‖αα

(
f(Θ−k+[0,h]/‖Θ[−k+[0,h]‖p)− f(Θ/‖Θ‖p)

)]
=: I + II .

We will prove that I and II vanish as h→∞. Since p ≥ α subadditivity yields for k ∈ [0, h],

∣∣∣‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

−
‖Θ‖αp
‖Θ‖αα

∣∣∣ =

∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥α
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥α
p

∣∣
‖Θ−k+[0,h]‖αα‖Θ‖αα

≤

∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥p
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥p
p

∣∣α/p
‖Θ−k+[0,h]‖αα‖Θ‖αα

.

Moreover,

∣∣∥∥‖Θ‖αΘ−k+[0,h]

∥∥p
p
−
∥∥‖Θ−k+[0,h]‖αΘ

∥∥p
p

∣∣
≤ ‖Θ−k+[0,h]‖pα

( −k−1∑
t=−∞

|Θt|p +
+∞∑

t=−k+h+1

|Θ|p
)

+
∣∣‖Θ‖α − ‖Θ−k+[0,h]‖α

∣∣p −k+h∑
t=−k

|Θt|p .

Thus, |I| is bounded from above by

1

h+ 1
‖f‖∞

h∑
k=0

(
E
[‖Θ[−∞,−k−1]‖αp

‖Θ‖αα

]
+ E

[‖Θ[−k+h+1,∞]‖αp
‖Θ‖αα

]
+E
[‖Θ[−∞,−k−1]‖αα + ‖Θ[−k+h+1,+∞]‖αα

‖Θ‖αα

‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

])
≤ 1

h+ 1
‖f‖∞

h∑
k=0

(
E
[‖Θ[−∞,−(k+1)]‖αp + ‖Θ[−∞,−(k+1)]‖αα

‖Θ‖αα

]
+E
[‖Θ[k+1,+∞]‖αp + ‖Θ[k+1,+∞]‖αα

‖Θ‖αα

])
.

Taking the limit as h→∞, the Cèsaro limit on the right-hand side converges to zero.
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We use the Lipschitz-continuity of f to obtain an upper bound of |II|:

|II| ≤ 1

h+ 1
c

h∑
k=0

E
[‖Θ−k+[0,h]‖αp
‖Θ−k+[0,h]‖αα

d̃α

( Θ−k+[0,h]

‖Θ−k+[0,h]‖p
,

Θ

‖Θ‖p

)]
.

Similar arguments as for |I| → 0 show that |II| → 0.

2.7.4 Proofs of the results of Section 2.4

Proof of Theorem 2.4.1

We start with a version of Theorem 2.4.1 for deterministic thresholds (xb).

Lemma 2.7.5. Assume the conditions of Theorem 2.4.1. Then for every g ∈ G+( ˜̀p),

1

k

m∑
t=1

g(x−1
b Bt)

P−→
∫ ∞

0
E
[
g(yQ(p))

]
d(−y−α) , n→∞ , (2.7.13)

holds for sequences kn →∞ and mn := [n/bn]→∞ as in MXp.

Proof. If MXp holds for Lipschitz-continuous f ∈ G+(˜̀p), then it holds for functions g ∈ G+(˜̀p) of
the form g(xt) = 11(xt ∈ A) where A is a continuity-set of ˜̀p and 0 6∈ A. It suffices to prove that

(
E
[
e−

1
k

∑bm/kc
t=1 g(x−1

b Bt)
])k → e−E

[ ∫∞
0 g(yQ(p))d(−y−α)

]
. (2.7.14)

By stationarity,

E
[
1− e−

1
k

∑bm/kc
t=1 g(x−1

b Bt)
]

= O
(
k−2mE[g(x−1

b B1)]
)
. (2.7.15)

Since g vanishes in some neighborhood of the origin there exists cg > 0 such that g(x) = g(x) 11(‖x‖p >
cg). Therefore and by virtue of Proposition 2.7.2 the right-hand side of (2.7.15) vanishes as n→∞.
Now a Taylor expansion argument shows that the left-hand side of (2.7.14) is of the asymptotic
order ∼ exp{−(m/k)E[g(x−1

b Bt)]}, and another application of Proposition 2.7.2 yields (2.7.14). We
conclude by the portmanteau theorem for M0(˜̀p)–convergence in Hult and Lindskog [89], Theorem
2.4. that (2.7.13) holds.

We continue with the proof of Theorem 2.4.1. Lemma 2.7.5 implies convergence of the empirical
measures in M0(˜̀p):

Pn(·) :=
1

k

m∑
t=1

11(x−1
b Bt ∈ · )

P−→ P (·) :=

∫ ∞
0

P(yQ(p) ∈ ·)d(−y−α) .

Using the argument in Resnick [143], p. 81, we may conclude ‖B‖p,(k)/xb
P−→ 1, and thus the joint

convergence in (Pn, ‖B‖p,(k)/xb)
P−→ (P, 1) in M0( ˜̀p) × R+ follows. Now (2.4.2) follows by an
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application of the continuous mapping theorem to the scaling function s(P (·), t) = P (t ·). To
prove continuity of s we use again the portmanteau theorem for M0(˜̀p)–convergence in Hult and
Lindskog [89], Theorem 2.4. Thus it suffices to check whether the limit Pn f(·/t) P−→ P f holds as
(n, t)→ (∞, 1) for Lipschitz-continuous f ∈ G+( ˜̀p). But we have with Lemma 2.7.5

|Pn f(·/t)− P f | ≤ |Pn f(·/t)− Pn f |+ |Pn f − P f |

= |Pn f(·/t)− Pn f |+ oP(1), n→∞.

Then, for all 0 < t0 ≤ t < 2, for t0 ≤ 1, setting g(x) = (‖x‖p ∧ ‖f‖∞) 11({x : ‖x‖p > cf/t0}), we
have

|Pn f(·/t)− P f | ≤
∣∣t−1 − 1

∣∣Pn g + oP(1)

≤
∣∣t−1 − 1

∣∣ (c+ oP(1)
)

+ oP(1) ,

for some c > 0, cf > 0 as above. Letting t→ 1, continuity of s follows.

Proof of Proposition 2.4.4

The result follows by a direct application of Theorem 3.1 in Bartkiewicz et al. [5] on u>Sn for
any u ∈ Rd such that |u| = 1 by checking their conditions (AC), (TB). Condition (2.4.8) implies
that for all δ > 0,

lim
l→∞

lim sup
n→∞

n

bn∑
t=l

P(|Xt| > δ an , |X0| > δ an) ,

from which (AC) is immediate. This condition also implies (TB). We show this in two steps.
First, we identify the coefficients b(d) in (TB) in terms of the spectral tail process. Mikosch and
Wintenberger [121] showed that

b±(d)− b±(d− 1) = E
[( d∑

j=0

u>Θj

)α
±

]
− E

[( d∑
j=1

u>Θj

)α
±

]
,

where we suppress in the notation the dependence of the left-hand side on u in what follows. (TB)
amounts to verifying that b±(d) − b±(d − 1) converges as d → ∞. For α ∈ (0, 1) this follows
by concavity since ‖Θ‖α < ∞ a.s. For 1 < α < 2 this will follow by a convexity argument if
E[(
∑

j≥0 |Θj |)α−1] <∞. By subadditivity and Jensen’s inequality, it is enough to check

∞∑
j=0

(
E[|Θj |α−111(|Θj | > 1)] + E[|Θj | ∧ 1]

)
< +∞ . (2.7.16)
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We start by showing

∞∑
j=0

E
[
|Θj | ∧ 1

]
<∞ . (2.7.17)

Condition (2.4.8) implies

lim
l→∞

lim sup
n→∞

n

bn∑
j=l

E
[
(|a−1

n Xj | ∧ 1) 11(|X0| > an)
]

= 0 ,

which yields the following Cauchy criterion: for any ε > 0 there exists K sufficiently large such that
for l ≥ K,h ≥ 0,

lim sup
n→∞

n

l+h∑
j=l

E
[
(|a−1

n Xj | ∧ 1) 11(|X0| > an)
]

=
l+h∑
j=l

E
[
|Y Θj | ∧ 1

]
≤ ε ,

where we used regular variation of (Xt) in the last step. Then, we conclude (2.7.17) holds. By
stationarity we can show similarly

∞∑
j=0

E[|Θ−j | ∧ 1] < +∞. (2.7.18)

Then, by the time-change formula in (2.3.5) we deduce

∞ >
∞∑
j=0

E[|Θ−j | ∧ 1] =
∞∑
j=0

E[|Θj |α (|Θj |−1 ∧ 1)]

=

∞∑
j=0

E[|Θj |α−1 ∧ |Θj |α] >

∞∑
j=0

E[|Θj |α−111(|Θj | > 1)],

and (2.7.16) holds. This finishes the proof of the fact that E[(
∑

j≥0 |Θt|)α−1] < +∞, in particular
c(1) <∞. Applying the mean value theorem and dominated convergence we arrive at the relation

b±(d)− b±(d− 1) → E
[( ∞∑

j=0

u>Θj

)α
±
−
( ∞∑
j=1

u>Θj

)α
±

]
, d→∞ .
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Reasoning for the limit as for (2.3.6) and recalling that c(1) <∞, we identify

E
[( ∞∑

j=0

u>Θj

)α
±
−
( ∞∑
j=1

u>Θj

)α
±

]
= E

[( ∞∑
j=−∞

u>Θj

)α
±

/
‖Θ‖αα

]
= E

[( ∞∑
j=−∞

u>Q
(α)
j

)α
±

]
= c(1)E

[( ∞∑
j=−∞

u>Q
(1)
j

)α
±

]
.

2.7.5 Proofs of the results of Section 2.6

Proof of Proposition 2.6.1

Notice that ψg is bounded and measurable. For p = α we have Q(α) d
= Θ/‖Θ‖α. Then the result

follows from Proposition 3.6 in Janssen [96]. For p > 0, assuming the spectral cluster process Q(p)

is well defined we have ‖Θ‖p < ∞ a.s. and c(p) < ∞. Then, we introduce the Radon-Nikodym
derivative of L(Q(p)) with respect to L(Θ/‖Θ‖p) which by (2.3.1) is the function h : `p∩{x : ‖x‖p =

1} → R≥0 defined by h(y/‖y‖p) := ‖y‖α/‖y‖p. Finally, the result follows by another application
of Proposition 3.6 in Janssen [96].

Proof of Theorem 2.6.2

The proof is given for p = α only; the case p ≤ α extends in a natural way. Let g : `α → R be a
continuous bounded function. We start by proving that ψg defined in (2.6.1) is a continuous bounded
function on ˜̀α. Fix ε > 0 and [z] ∈ ˜̀α ∩ {[y] : ‖y‖α = 1}. Then for all [x] ∈ ˜̀α ∩ {[y] : ‖y‖α = 1},
k ∈ Z and N ∈ N, we have

|ψg(x)− ψg(z)| =
∣∣∣∑
j∈Z
|x∗j |αg((x∗j+t)t)−

∑
j∈Z
|z∗j |αg((z∗j+t)t)

∣∣∣
=

∣∣∣∑
j∈Z
|x∗j − z∗j−k|αg((x∗j+t)t)−

∑
j∈Z
|z∗j |α

(
g((z∗j+t)t)− g((x∗j+t+k)t)

)∣∣∣
≤ ‖g‖∞dαα(B−kz∗,x∗) + 2‖g‖∞ dαα(z∗, z∗[−N,N ])

+
∑
|j|<N

|z∗j |α
∣∣g((z∗j+t)t)− g((x∗j+t+k)t)

∣∣ .
If [x] satisfies d̃αα(z,x) < ε(3‖g‖∞)−1 then there exists k0 ∈ Z such that

d̃αα(z,x) < dαα(B−k0z∗,x∗) < ε(3‖g‖∞)−1.

Furthermore, choose N0 ≥ 0 such that dαα(z∗, z∗[−N0,N0]) < ε(2 × 3‖g‖∞)−1 and consider the finite
set C[z] ⊂ `α ∩ {y : ‖y‖α = 1}, defined by C[z] := {(z∗j+t)t ∈ `α : |j| < N0, |z∗j | > 0}. Notice that
for every z̃ ∈ C[z] there exists δ(z̃) such that if dαα(z̃,x) < δ(z̃) implies |g(z̃)− g(x)| < ε/3. Finally,
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define η(z) := min{δ(z̃) : z̃ ∈ C} ∧ ε(3‖g‖∞)−1. Then, noticing that
∑
|j|<N0

|z∗j |α ≤ ‖z‖αα = 1,
we also obtain a bound for the last term. Hence, for every [x] ∈ ˜̀α satisfying dαα(z,x) < η(z) we
have |ψg(x)− ψg(z)| < ε.

This finishes the proof of the continuity of the function ψg on ˜̀α ∩{y : ‖y‖α = 1}. We conclude
with applications of Lemma 2.7.5 and Proposition 2.6.1.

Proof of Proposition 2.6.5

Theorem 4.5 in Mikosch and Wintenberger [123] yields immediately

∣∣∣P(sup1≤t≤n St > xn)

nP(|X1| > xn)
− E

[(
sup
t≥0

t∑
i=0

Θi

)α
+
−
(

sup
t≥1

t∑
i=1

Θi

)α
+

]∣∣∣→ 0, n→∞ ,

(2.7.19)

and nP(|X1| > xn) → 0. We multiply the function inside the limiting expected value by the
constant 1 = ‖Θ‖αα/‖Θ‖αα. Moreover, since c(1) <∞, then E[(

∑∞
t=1 |Θt|)α−1] <∞; see Lemma 3.11

in Planinić and Soulier [138]. Then, by Fubini’s theorem,

E
[(

sup
t≥0

t∑
i=0

Θi

)α
+
−
(

sup
t≥1

t∑
i=1

Θi

)α
+

]
=

∑
j∈Z

E
[
|Θj |α

((
sup
t≥0

t∑
i=0

Θi

‖Θ‖α
)α

+
−
(

sup
t≥1

t∑
i=1

Θi

‖Θ‖α
)α

+

)]
.

At this point we apply the time-change formula for positive measurable functions of Θ at every
term of the sum in j ∈ Z; see Corollary 2.8. in Dombry et al. [48]. By the same argument as in
the proof of Proposition 2.7.2 we obtain the representation of the expectation in (2.7.19) in terms
of the univariate spectral cluster process Q(p).

Now we apply Theorem 2.6.2 to f(x) := limk→∞(supt≥−k
∑t

i=−k xi)
α
+ on `1. It is uniformly

continuous and bounded by one on the sphere of `p, hence (2.6.2) holds for f . Similarly, the
constant c(1)−1 can be estimated by employing the function g(x) := ‖x‖α on `1 which is bounded
by one on the unitary `1-sphere for α ≥ 1.

Proof of Proposition 2.6.7

The re-normalization function ζ is continuous on the unit sphere of (`α, dα), except for sequences
with x0 = 0. Then

P(ρ(Y Θ) > 1) = E
[
ρ(Θt)

α ∧ 1
]

= E
[
ρ(Q

(α)
t /|Q(α)

0 |)
α ∧ 1

]
= E

[
(ρα ∧ 1) ◦ ζ(Q(α))

]
.

The proof is finished by an application of Theorem 2.6.2.
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Chapter 3: Some variations on the extremal index

Abstract

We re-consider Leadbetter’s extremal index for stationary sequences.
It has interpretation as reciprocal of the expected size of an extremal
cluster above high thresholds. We focus on heavy-tailed time series,
in particular on regularly varying stationary sequences, and discuss
recent research in extreme value theory for these models. A reg-
ularly varying time series has multivariate regularly varying finite-
dimensional distributions. Thanks to results by Basrak and Segers
[10] we have explicit representations of the limiting cluster structure
of extremes, leading to explicit expressions of the limiting point pro-
cess of exceedances and the extremal index as a summary measure of
extremal clustering. The extremal index appears in various situations
which do not seem to be directly related, like the convergence of max-
ima and point processes. We consider different representations of the
extremal index which arise from the considered context. We discuss
the theory and apply it to a regularly varying AR(1) process and the
solution to an affine stochastic recurrence equation.

keywordsa: Extremal index, cluster Poisson process, extremal cluster,
regularly varying time series, affine stochastic recurrence equation, au-
toregressive process

aPrimary 60G70 Secondary 60G55 60F99 60J10 62M10 62G32
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Main contributions

I address (Quest. 3) in this Chapter. The following are my main contributions:

- (Quest. 3): This chapter reviews the extremal index from the original work in [109,
110], and highlights its relationship with the α-cluster. Mainly, the extremal index
summarizes the temporal clustering effect due to successive observations with multiple
large values. Recall the spectral tail process (Θt) in (1.5.2), and the α-cluster Q =

Q(α) ∈ `α introduced in Theorem 2.2.1, which admits the representation

Q
d
= Θ/‖Θ‖α.

Theorem 3.3.8 reconsiders the asymptotics of the point process Nn =
∑n

t=1 εXt/an in
terms of the α-cluster, as n→ +∞, where nP(|X0| > an)→ 1. Then, a re-interpretation
of the extremal index as a summary statistic of the α-cluster follows (see Proposi-
tion 3.3.10).

Section 3.4 otlines state-of-the-art methods for inferring the extremal index and re-
introduces the α-cluster-based estimator from extremal `α-blocks; see (2.4.4). A Monte-
carlo study compares it against state-of-the-art estimators. The simulations illustrate
Northrop’s estimator outperforms in terms of variance. The new estimator is competitive
in terms of bias, and improves classical cluster-based blocks and runs estimators in this
aspect.
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3.4.2 Runs and intervals estimator . . . . . . 75
3.4.3 Northrop’s estimator . . . . . . . . . . . 76
3.4.4 An estimator based on the spectral clus-

ter process . . . . . . . . . . . . . . . . . 76
3.5 A Monte-Carlo study of the estimators . . . . . 77

3.1 Leadbetter’s approach to modeling the extremes of a stationary sequence

The paper by Leadbetter [109] and the book of Leadbetter, Lindgren and Rootzén [110] provided
a first systematic approach to the extreme value theory of dependent stationary sequences. In
particular, Leadbetter introduced mixing and anti-clustering conditions, the conditions D and D′,
which are tailored for the analysis of dependent extremal events. Moreover, [110] propagated the
use of the extremal index as a measure for extremal clustering.

The idea of an extremal index originates from [127, 115, 132] who discovered that the maxima

Mn = max
t=1,...,n

Xt , n ≥ 1 ,

of numerous examples of dependent stationary sequences (Xt) with common distribution F share
the property that

P(Mn ≤ un) ≈
[
P(X ≤ un)

]n θX =
(
(F (un))n

)θX , n→∞ ,

for some number θX ∈ [0, 1] provided (un) is a sequence of high thresholds converging sufficiently
fast to the right endpoint xF of F . Leadbetter [109] made this notion precise as the expected size
of an extremal cluster of exceedances above high-level thresholds. Since (F (un))n is the distribution
function of the maximum of n iid random variables with common distribution F at the threshold
un, the quantity θX describes the shrinking effect that the appearance of dependent extremes may
have on the distribution of Mn compared to (F (un))n.

Leadbetter defined the extremal index θX as follows: assume that for every τ ∈ (0,∞) there
exists a sequence (un(τ)) such that

nF (un(τ)) = n (1− F (un(τ)))→ τ,

and there exists a number θX such that

P(Mn ≤ un(τ))→ e−τ θX , n→∞ .

If such a number θX exists it belongs to the interval [0, 1] and is independent of the choice of the
sequences (un).

An immediate application is to the convergence in distribution of the sequence (Mn). Assume
that (Xt) belongs to the maximum domain of attraction of an extreme value distribution H, i.e.,
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for iid copies (X̃t) of X1, M̃n = max(X̃1, . . . , X̃n), there exist constants cn > 0, dn ∈ R such that
c−1
n (M̃n − dn)

d−→ ξ as n → ∞ and ξ has distribution H. Then if (Xt) has an extremal index θX
we have

nF (cn x+ dn︸ ︷︷ ︸
=:un(τ)

)→ − logH(x)︸ ︷︷ ︸
=:τ

, n→∞ , x ∈ suppH .

and

P
(
c−1
n (Mn − dn) ≤ x

)
→ HθX (x) , n→∞ , x ∈ suppH .

In the case of an iid sequence it is easily seen that nF (un(τ))→ τ holds if and only if P(Mn ≤
un(τ)) → e−τ . Hence θX = 1. The extremal index 1 is not exclusive to iid sequences. Indeed, in
the book [110] various examples of strictly stationary sequences are considered for which θX = 1.
For example, if (Xt) is a Gaussian stationary sequence whose autocovariance function satisfies
cov(X0, Xh) = o(1/ log h) as h→∞, then θX = 1.

3.2 Sufficient conditions for the existence of the extremal index

The extremal index is often interpreted as the reciprocal of the expected size of an extremal
cluster for a stationary sequence (Xt). We will give some justification for this interpretation.

3.2.1 The method of block maxima

The key is the definition of an extremal cluster in the sample X1, . . . , Xn: split the sample into
kn = [n/rn] blocks of equal length rn:

X1, . . . , Xrn︸ ︷︷ ︸
Block 1

, Xrn+1, . . . , X2 rn︸ ︷︷ ︸
Block 2

, . . . , X(kn−1) rn+1, . . . , Xkn rn︸ ︷︷ ︸
Block kn

,

we ignore the last block of length less than rn, and we simply call a block an extremal cluster relative
to a high threshold u = un (this means that un ↑ xF as n→∞) if there is at least one exceedance
of this threshold in this block. For an asymptotic theory it will be important that r = rn → ∞
such that rn is small compared to n, i.e., kn →∞.

In view of the stationarity of (Xt) the expected cluster size of a block is given by

E
[ rn∑
t=1

11(Xt > un)
∣∣∣Mrn > un

]
=

rn∑
t=1

P(Xt > un ,Mrn > un)

P(Mrn > un)

=

rn∑
t=1

P(Xt > un)

P(Mrn > un)

=
rn P(X > un)

P(Mrn > un)
=:

1

θn
.
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Obviously, θn is a number in [0, 1]. Under mild regularity conditions the limit θ = limn→∞ θn exists,
assumes values in (0, 1] and coincides with Leadbetter’s extremal index θX ; see Theorem 3.2.3 below.
For this reason, the extremal index θX is often referred to as the reciprocal of the expected extremal
cluster size above high thresholds.
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Figure 3.2.1. Visualization of the max-moving average Xt = max(Zt, Zt+1, Zt+2), t = 1, . . . , 100, (blue)
for iid student noise Zt, t = 1, . . . , 102, with α = 4 degrees of freedom (red dots). The values of Xt typically
appear in clusters of size 3. The process (|Xt|) has extremal index θ|X| = 1/3.
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Figure 3.2.2. The daily log-return series of the Bit Coin USD stock prices from 17 September 2014 until
8 January 2021. We only show the returns below -0.04 or above 0.04 which we interpret as extreme values.
These limits roughly correspond to the 10% and 90% quantiles of the data. The extremes typically appear in
clusters.

3.2.2 Approximation of θX by θn

The following result can be found in slightly different forms in [40], proof of Lemma 2.8, [154, 10].

Theorem 3.2.3. Consider the following conditions:

(1) (Xt) is a real-valued stationary sequence whose marginal distribution F does not have an atom
at the right endpoint xF .
(2) For a sequence un ↑ xF and an integer sequence r = rn → ∞ such that kn = [n/rn] → ∞ the
following anti-clustering condition is satisfied:

lim
k→∞

lim sup
n→∞

P
(
Mk,rn > un | X0 > un

)
= 0 . (3.2.1)
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Here Ma,b = maxi=a,...,bXi for a ≤ b such that Mb = Ma,b with a = 1.
(3) A mixing condition holds:

P(Mn ≤ un)−
(
P(Mrn ≤ un)

)kn → 0 , n→∞ , (3.2.2)

where (un), (kn) and (rn) are as in (2).
(4) For all positive τ there exists a sequence (un) = (un(τ)) such that nF (un)→ τ and (2), (3) are
satisfied for these sequences (un).

Then the following statements hold:

1. If (1) and (2) are satisfied then

lim
k→∞

lim sup
n→∞

∣∣θn − P
(
Mk ≤ un | X0 > un

)∣∣ = 0 , (3.2.3)

and lim infn→∞ θn > 0.
2. If (1) and (4) are satisfied and θ = limn→∞ θn exists, then θX ∈ (0, 1] exists and coincides with
θ.

Condition (3.2.2) is satisfied for strongly mixing (Xt) with mixing rate (αh) if one can find integer
sequences (`n) and (rn) such that `n/rn → 0, rn/n→ 0 and knα`n → 0 as n→∞. Anti-clustering
conditions are common in extreme value theory since Leadbetter introduced the D′ condition which
is much stronger than (3.2.1) but also easily verified on examples. The goal of such a condition is
to avoid that the stationary sequence stays above a high threshold for too long.

Relation (3.2.3) is in agreement with O ’Brien’s [133] characterization of the extremal index of
(Xt) as the limit

θX = lim
n→∞

P(M`n ≤ un | X0 > un), (3.2.4)

for a sequence (`n) with `n/n→ 0, thresholds un ↑ xF such that nF (un)→ 1 as n→∞, provided
a mixing condition holds. O’Brien’s condition (3.2.4) has the advantage that it avoids the definition
of an extremal cluster.

Remark 3.2.4. Relation (3.2.3) provides a constructive way of calculating θX : if we know that the
limits f(k) := limn→∞ P

(
Mk ≤ un | X0 > un

)
exist for every k ≥ 1 then we can try to derive

θX = limk→∞ f(k). In Section 3.3 we will follow this approach in the case of a regularly varying
sequence.

3.3 Regularly varying sequences

3.3.1 Definition and examples

As a matter of fact, clusters of extremes are more prominent in stationary sequences with heavy-
tailed marginal distribution. To illustrate this fact, consider a stationary causal AR(1) process which
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solves the difference equation Xt = ϕXt−1 + Zt, t ∈ Z, for an iid noise sequence (Zt). Necessarily,
ϕ ∈ (−1, 1) and, if (Zt) is iid standard normal then (|Xt|) has extremal index θ|X| = 1 (see [110]),
while for iid student noise (Zt) with α degrees of freedom we have θ|X| = 1−|ϕ|α; see Example 3.3.4
below. Thus, the smaller α (the heavier the tail) for given ϕ the closer θ|X| to zero.

An AR(1) process with student noise is an example of a regularly varying time series. This class
of heavy-tailed processes has been studied rather extensively in the last 15 years; see [143] for some
basics about multivariate regular variation, and [108] for a recent textbook treatment. This class
was considered in full generality first by [40]: they required that the finite-dimensional distributions
of the process satisfy a multivariate regular variation condition; see [140, 143] for the definition of
this notion. It is an extension of power-law tail behavior from the univariate to the multivariate
case defined via the vague convergence of tail measures with infinite limit measures which have the
homogeneity property.

Here we will follow an alternative approach by [10] tailored for stationary sequences, avoiding the
vague convergence concept. They proved that a real-valued stationary sequence (Xt) is regularly
varying with index α > 0 in the sense of [40] if and only if there exists a sequence (Θt) and a
Pareto(α) distributed random variable Y , i.e., P(Y > y) = y−α, y > 1, such that (Θt) and Y are
independent and, for all h ≥ 0,

P
(
x−1(Xt)|t|≤h ∈ ·

∣∣ |X0| > x
) w−→ P

(
Y (Θt)|t|≤h ∈ ·

)
, x→∞ .

In the latter relation x can be replaced by any sequence (an) such that nP(|X| > an) → 1 as
n→∞. Moreover, by definition, |Θ0| = 1 a.s. The sequence (Θt) is the spectral tail process of the
regularly varying process (Xt); it describes the propagation of a value |X0| > x for large x through
the stationary sequence (Xt) into its past and future.

Example 3.3.1. We consider a stationary AR(1) process given as the causal solution to the dif-
ference equation Xt = ϕXt−1 + Zt, t ∈ Z, where (Zt) is iid regularly varying with index α (e.g.
Pareto(α) or student(α)). This means that a generic element Z satisfies limx→∞ P(±Z > x)/P(|Z| >
x) = p± for non-negative values p± such that p+ + p− = 1, and P(|Z| > x) = L(x)x−α, x > 0,
for some slowly varying function L. Then a generic element X inherits the regularly varying tail
behavior from Z (see [42]):

P(±X > x)

P(|Z| > x)
∼
∞∑
j=0

[
p± (ϕj)α± + p∓ (ϕj)α∓

]
= P(Θ0 = ±1)(1− |ϕ|α) .

But even more is true: (Xt) is a regularly varying time series with spectral tail process

Θt = ΘZ sign(ϕJ+t) |ϕ|t11(J + t ≥ 0) = Θ0 ϕ
t 11(J + t ≥ 0) , t ∈ Z ,

(3.3.1)
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where P(ΘZ = ±1) = p±, ΘZ is independent of J which has distribution

P(J = j) = (1− |ϕ|α) |ϕ|j α , j ≥ 0 .

In particular, the forward spectral tail process is given by Θt = Θ0 ϕ
t, t ≥ 0.

Example 3.3.2. We consider the unique causal solution to the affine stochastic recurrence equation
Xt = AtXt−1 +Bt, t ∈ Z, for an iid sequence ((At, Bt))t∈Z with generic element (A,B) ∈ R2

+. We
assume that the distribution of (A,B) satisfies the conditions of the Kesten-Goldie theory; see
[103, 74], cf. [22] for a textbook treatment. The most important condition in this context is the
existence of a unique solution α > 0 to the equation E[Aα] = 1 which yields the tail index α. Under
these conditions for a generic element X, there exists a positive constant c+ such that

P(X > x) ∼ c+ x
−α , x→∞ .

The forward spectral process is then given by

(Θt)t≥0 = (Πt)t≥0 , where Πt = A1 · · ·At ,

while the backward spectral tail process (Θt)t≤−1 has a rather complicated structure.
Writing St = log Πt =

∑t
i=1 logAi, t ≥ 1, we observe that (St) constitutes a random walk with

a negative drift. Indeed, by Jensen’s inequality we have E[log(Aα)] < log(E[Aα]) = 0.

3.3.2 The extremal index

Following Remark 3.2.4, we will derive the extremal index θX of a stationary non-negative
regularly varying sequence (Xt) in terms of its spectral tail process. First, we observe that by virtue
of the continuous mapping theorem, as n→∞ for k ≥ 1,

P
(
a−1
n Mk ≤ 1

∣∣X0 > an
)

→ P
(
Y max

1≤t≤k
Θt ≤ 1

)
= P

(
max

1≤t≤k
Θα
t ≤ Y −α

)
= E

[(
1− max

1≤t≤k
Θα
t

)
+

]
= E

[
max

0≤t≤k
Θα
t − max

1≤t≤k
Θα
t

]
.

Here we used the fact that Y −α is U(0, 1) uniformly distributed and Θ0 = 1 a.s. Using dominated
convergence as k →∞, we proved under the anti-clustering condition (3.2.1) that

lim
n→∞

θn = lim
k→∞

lim
n→∞

P
(
a−1
n Mk ≤ 1

∣∣X0 > an
)

= lim
k→∞

E
[

max
0≤t≤k

Θα
t − max

1≤t≤k
Θα
t

]
= E

[(
1−max

t≥1
Θα
t

)
+

]
.

From Theorem 3.2.3 we obtain the following result in [10].
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Corollary 3.3.3. Consider a non-negative stationary regularly varying process (Xt) with index
α > 0. Then the following statements hold:

1. If the anti-clustering condition (3.2.1) holds for (un) = (x an) and some x > 0 then the limit
θ = limn→∞ θn exists, is positive and has the representations

θ = P
(
Y sup

t≥1
Θt ≤ 1

)
= E

[(
1− sup

t≥1
Θα
t

)
+

]
= E

[
sup
t≥0

Θα
t − sup

t≥1
Θα
t

]
.

(3.3.2)

2. If (3.2.1) and the mixing condition (3.2.2) hold for (un) = (x an) and all x > 0 then the extremal
index θX exists and coincides with θ.

The representations of θ given in (3.3.2) only depend on the forward spectral process (Θt)t≥0.
In Proposition 3.3.10 below we provide representations of the extremal index θ|X| depending on the
whole spectral tail process (Θt)t∈Z.

Example 3.3.4. We consider the regularly varying AR(1) process from Example 3.3.1. It can be
shown to satisfy the anti-clustering and mixing conditions of Theorem 3.2.3. We conclude from
Corollary 3.3.3 and the form of the spectral tail process given in (3.3.1) that

θ|X| = E
[(

1−max
t≥1

Θα
t

)
+

]
= 1−max

t≥1
|ϕ|α t = 1− |ϕ|α .

This formula was already achieved in [42] in the wider context of linear processes.

Example 3.3.5. We consider the regularly varying solution of an affine stochastic recurrence equa-
tion under the conditions and with the notation of Example 3.3.2. It can be shown to satisfy the
anti-clustering and mixing conditions of Theorem 3.2.3; see [22]. We conclude from this result that
(Xt) has extremal index

θX = E
[(

1−max
t≥1

Πt

)
+

]
= E

[(
1− exp

(
max
t≥1

St
))

+

]
,

where St =
∑t

i=1 logAi, t ≥ 1, is a random walk with a negative drift. This value of θX was derived
in [82]. In that paper a Monte Carlo simulation procedure for the evaluation of θX was proposed.
Direct calculation of θX is difficult; see Example 3.3.12 for an exception.

3.3.3 The extremal index and point process convergence toward a cluster Poisson process

A useful auxiliary result

Lemma 3.3.6. Consider a non-negative stationary regularly varying sequence (Xt) with index α > 0

and assume that (3.2.1) holds for (un) = (x an) and all x > 0. Then

‖Θ‖αα :=
∑
j∈Z

Θα
j <∞ a.s.

66



In particular, Θt → 0 a.s. as |t| → ∞, and the time T ∗ of the largest record of (Θt) is finite, i.e.,
|T ∗| is the smallest integer such that

ΘT ∗ = max
t∈Z

Θt .

Proof. Write (Yt) = Y (Θt) where the Pareto(α) variable Y and the spectral tail process (Θt) are
independent. We start by showing

Yt
a.s.−→ 0 , t→∞ . (3.3.3)

Since (Xt) is regularly varying we have for all x > 0 and integers k ≥ 1,

lim
h→∞

lim
n→∞

P
(
Mk,k+h > xan | X0 > an

)
= lim

h→∞
P
(

max
k≤t≤k+h

Yt > x
)

= P
(

max
t≥k

Yt > x
)
.

On the other hand, using the anti-clustering condition (3.2.1) for all x ∈ (0, 1], we have for fixed
k, h ≥ 1,

lim
n→∞

P
(
Mk,k+h > xan | X0 > an

)
≤ lim sup

n→∞
P
(
Mk,rn > xan | X0 > xan

)P(X > xan)

P(X > an)

= x−α lim sup
n→∞

P
(
Mk,rn > xan | X0 > xan

)
= x−αεk ,

and the right-hand side term εk vanishes for large k. Hence, letting h→∞, we obtain for all x > 0,

P
(

max
t≥k

Yt > x
)
≤ x−αεk ,

and therefore

lim
k→∞

P
(

max
t≥k

Yt > x
)
≤ lim

k→∞
x−αεk = 0 ,

implying maxt≥k Yt
P−→ 0 as k → ∞. Since (Yt) = Y (Θt) a.s. and Y > 0 is independent of (Θt)

this is only possible if maxt≥k Θt
P−→ 0 as k → ∞ but the latter relation is equivalent to Θt

a.s.−→ 0

as t→∞, implying (3.3.3).

Next we show that

Y−t
a.s.−→ 0 , t→∞ .
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Since Yt
a.s.−→ 0 as t→∞ and Y0 > 1 a.s. the following relation holds

P
( ⋃
i≥0

{
Yi ≥ 1 > max

t>i
Yt
})

=
∑
i≥0

P
(
Yi ≥ 1 > max

t>i
Yt
)

= 1 .

Suppose that P(
∑

j≤0 11(Yj > ε) =∞) > 0 for some ε > 0. Then there exists some i ≥ 0 such that

P
(∑
j≤0

11(Yj > ε) =∞, Yi ≥ 1 > max
t>i

Yt

)
> 0 .

We recall the time-change formula from [10]:

P((Θ−h, . . . ,Θh) ∈ · | Θ−t 6= 0) = E
[ Θα

t

E
[
Θα
t

]11((Θt−h, . . . ,Θt+h)

Θt
∈ ·
)]
.

(3.3.4)

In particular, P(Θt 6= 0) = E[Θα
t ] = 1 if and only if for all h ≥ 0,

P((Θ−h, . . . ,Θh) ∈ ·) = E
[ Θα

t

E
[
Θα
t

] 11
((Θt−h, . . . ,Θt+h)

Θt
∈ ·
)]
.

Therefore

∞ = E
[∑
j≤0

11(Yj > ε) 11
(
Yi ≥ 1 > max

t>i
Yt
)]

=
∑
j≤0

P
(
Yj > ε, Yi ≥ 1 > max

t>i
Yt
)

=
∑
j≤0

∫ ∞
1

E
[
11
(
yΘj > ε , yΘi ≥ 1 > y max

t>i
Θt

)]
d
(
− y−α

)
=

∑
j≤0

∫ ∞
1

E
[
Θα
−j 11

(
y > εΘ−j , y

Θi−j
Θ−j

≥ 1 > y max
t>i−j

Θt

Θ−j

)]
d
(
− y−α

)
≤ ε−α

∑
j≤0

E
[ ∫ ∞

1
11
(
z > 1 , zΘi−j ≥ ε−1 > z max

t>i−j
Θt

)
d
(
− z−α

)]
= ε−α

∑
j≤0

P
(
Yi−j ≥ ε−1 > max

t>i−j
Yt
)

= ε−α
∑
k≥i

P
(
Yk ≥ ε−1 > max

t>k
Yt
)

≤ ε−α .

In the last step we used the fact that the events {Yk ≥ ε−1 > maxt>k Yt}, k ≥ i, are disjoint. Thus
we got a contradiction. This proves that for all ε > 0 there exist only finitely many j ≤ 0 such that
Yj > ε, hence Yt

a.s.−→ 0 and also Θt
a.s.−→ 0 as t→ −∞, as desired.

In particular, the time T ∗ of the largest record of the sequence (Θt) is finite a.s.
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Now suppose that P(
∑

j∈Z Θα
j =∞) > 0. Then there exists an i ∈ Z such that

P
(∑
j∈Z

Θα
j =∞ , T ∗ = i

)
> 0 ,

and an application of the time-change formula (3.3.4) yields

∞ = E
[∑
j∈Z

Θα
j 11(T ∗ = i)

]
=
∑
j∈Z

E
[
Θα
j 11(T ∗ = i)

]
=

∑
j∈Z

P(T ∗ = i− j) = 1 ,

leading to a contradiction. Thus
∑

j∈Z Θα
j <∞ a.s. This proves the lemma.

Point process convergence toward cluster Poisson processes

The following point process result was proved in [40] and re-proved in [10] by using the termi-
nology of the spectral tail process.

We adapt the mixing condition in [40] tailored for point process convergence. It is expressed in
terms of the Laplace functionals of point processes. Recall that a point process N with state space
E = R0 = R\{0} has Laplace functional

ΨN (g) = E
[
exp

(
−
∫
E
g dN

)]
for g ∈ C+

K ,

where the set C+
K consists of the continuous functions on E with compact support. Since 0 is

excluded from E this means that g ∈ C+
K vanishes in some neighborhood of the origin. Moreover,

we have the weak convergence of point processes Nn
d−→ N on E if and only if ΨNn → ΨN pointwise;

see [140, 143].

Mixing condition A(an) Consider integer sequences rn →∞ and kn = [n/rn]→∞ and the point
processes with state space E = R0,

Nn =
n∑
i=1

εa−1
n Xi

and Ñrn =

rn∑
i=1

εa−1
n Xi

, n ≥ 1 ,

where εx denotes Dirac measure at x. The stationary regularly varying sequence (Xt) satisfies A(an)

if there exist (rn) and (kn) such that

ΨNn(g)−
(
Ψ
Ñrn

(g)
)kn → 0 , n→∞ , g ∈ C+

K . (3.3.5)

Remark 3.3.7. This condition is satisfied for a strongly mixing sequence (Xt) with mixing rate
(αh) if one can find integer sequences (`n) and (rn) such that `n/rn → 0, rn/n→ 0 and knα`n → 0.
This is a very mild condition indeed. Relation (3.3.5) ensures that, if Nn

d−→ N on the state space
E, then also

∑kn
i=1 Ñ

(i)
rn

d−→ N where (Ñ
(i)
rn )i=1,...,kn are iid copies of Ñrn. This fact ensures that the
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limit processes considered are infinitely divisible; cf. [101].

Theorem 3.3.8. Consider a stationary regularly varying sequence (Xt) with index α > 0. We
assume the following conditions:

(1) The mixing condition A(an) for integer sequences rn → ∞ such that kn = [n/rn] → ∞ as
n→∞.
(2) The anti-clustering condition (3.2.2) for the same sequence (rn) .

Then we have the point process convergence on the state space R0

Nn =
n∑
i=1

εa−1
n Xi

d−→ N =
∞∑
i=1

∞∑
j=−∞

ε
Γ
−1/α
i Qij

, (3.3.6)

where

•
∑∞

j=−∞ εQij , i = 1, 2, . . ., is an iid sequence of point processes with state space R. A generic
element Q = (Qj) of the sequence Q(i) = (Qij)j∈Z, i = 1, 2, . . ., has the distribution of the spectral
cluster process

Q =
( Θt

‖Θ‖α

)
t∈Z

.

• (Γi) are the points of a unit rate homogeneous Poisson process on (0,∞).
• (Γi) and (Q(i))i=1,2,... are independent.

Remark 3.3.9. In view of Lemma 3.3.6 we know that ‖Θ‖α < ∞ a.s. Hence the spectral cluster
process Q is well defined.

Since the Poisson points (Γ
−1/α
i ) and the sequence of iid point processes

(∑
j∈Z εQij

)
are inde-

pendent it is not difficult to calculate the Laplace functional of the limit process N :

ΨN (g) = exp
(
−
∫ ∞

0
E
[
1− e−

∑
j∈Z g(y Qj)

]
d(−y−α)

)
, g ∈ C+

K .

Now we apply the change of variables z = y |QT ∗ | in ΨN (g) where

|QT ∗ | =
|ΘT ∗ |
‖Θ‖α

=
maxt∈Z |Θt|(∑
j∈Z |Θj |α

)1/α
.

Then we obtain for g ∈ C+
K ,

ΨN (g) = exp
(
− E[|QT ∗ |α]

×
∫ ∞

0
E
[ |QT ∗ |α
E[|QT ∗ |α]

(
1− e−

∑
j∈Z g(z Qj/|QT∗ |)

)]
d(−z−α)

)
.

According to Proposition 3.3.10 below, θ|X| = E[|QT ∗ |α]. Now, changing the measure with the
density |QT ∗ |α/E[|QT ∗ |α] and writing Q̃ = (Q̃j)j∈Z for the sequenceQ/|QT ∗ | under the new measure,
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we arrive at

ΨN (g) = exp
(
−
∫ ∞

0
E
[(

1− e−
∑
j∈Z g(z Q̃j |)

)]
d
(
− (z/θ

1/α
|X|
)−α))

.

However, this alternative expression of the Laplace functional ΨN corresponds to another represen-
tation of the point process N :

N =
∞∑
i=1

∞∑
j=−∞

ε
(Γi/θ|X|)

−1/αQ̃ij
, (3.3.7)

where the Poisson points (Γ
−1/α
i ) are independent of the sequence

(∑
j∈Z εQ̃ij

)
of iid copies of∑

j∈Z εQ̃j .

We observe that |Q̃j | ≤ 1 a.s. and |Q̃T ∗ | = 1 a.s. The extremal index θ|X| plays an important
role in representation (3.3.7). Each Poisson point (Γi/θ|X|)

−1/α stands for the radius of a circle
around the origin, and the points (Q̃ij)j∈Z are inside or on this circle. In this sense, each Poisson
point (Γi/θ|X|)

−1/α creates an extremal cluster. Therefore we refer to the process N as a cluster
Poisson process.

Equivalent expressions for the extremal index

Based on the results in the previous subsection we can derive equivalent expressions of θ|X| in
terms of QT ∗ and T ∗.

Proposition 3.3.10. Assume the conditions of Theorem 3.3.8. Then the extremal index θ|X| of
(|Xt|) coincides with the following quantities:

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(T ∗ = 0) . (3.3.8)

Here Y is a Pareto(α) random variable independent of QT ∗ and T ∗ is the time of the largest record
of (|Θt|).

Remark 3.3.11. We observe that

E[|QT ∗ |α] = E
[maxt∈Z |Θt|α∑

j∈Z |Θj |α
]

= θ|X| .

Since θ|X| = P(T ∗ = 0) the extremal index θ|X| has the intuitive interpretation as the probability
that (|Θt|) assumes its largest value at time zero.

Example 3.3.12. We consider the regularly varying solution of an affine stochastic recurrence
equation under the conditions and with the notation of Example 3.3.2. An exception where the
extremal index has an explicit solution is the case logAt = Nt − 0.5 for an iid standard normal
sequence (Nt). Then E[At] = 1 and the theory mentioned in Example 3.3.2 yields regular variation
of (Xt) with index 1. Using the expression P(T ∗ = 0) and applying some random walk theory (such
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as the results in [29]), one obtains an exact expression for θX in terms of the Riemann zeta function
ζ; see Example 3.3.13. A first order approximation to this formula is given by

θX ≈
1

2
exp

(ζ(0.5)√
2π

)
≈ 1

2
exp(−0.5826) ≈ 0.2792. (3.3.9)

Example 3.3.13. Let B(i) = (Bt)t∈R be iid standard Brownian motions independent of Γ1 <

Γ2 < · · · which are the points of a unit-rate Poisson process on (0,∞). We consider the stationary
max-stable Brown-Resnick [20] process

Xt = sup
i≥1

Γ−1
i e

√
2B

(i)
t −|t| , t ∈ R .

It has unit Fréchet marginals P(Xt ≤ x) = Φ1(x) = e−x
−1 , x > 0. Any discretization X(δ) =

(Xδ t)t∈Z for δ > 0 is regularly varying with index 1 and spectral tail process Θ
(δ)
t = e

√
2Bδ t−δ|t|,

t ∈ Z. Direct calculation of −x logP(n−1 max1≤t≤nXδ t ≤ x), x > 0, yields the extremal index of
X(δ) as the limit

θ
(δ)
X = lim

n→∞
n−1E

[
sup

0≤t≤n
e
√

2Bδ t−δt
]
. (3.3.10)

We use the expression θ
(δ)
X = P(T ∗(δ) = 0) where T ∗(δ) is the first record time of (Θ

(δ)
t )t∈Z; see

(3.3.8). We consider the first ladder height epoch τ+(δ) = inf{t ≥ 1 :
√

2Bδ t + δt < 0}. Using
the symmetry of the Gaussian distribution, (Θ

(δ)
t )t≥1

d
= (1/Θ

(δ)
−t )t≥1, we obtain θ

(δ)
X = P(T ∗(δ) =

0) = P(τ+(δ) = ∞)2. Combining this with the classical identity P(τ+(δ) = ∞) = 1/E[τ−(δ)] for
τ−(δ) = inf{t ≥ 1 :

√
2Bδ t − δt ≤ 0}, from random walk theory (see [2]) we get

θ
(δ)
X =

( 1

E[τ−(δ)]

)2
=
( E[Bδ − δ]
E[
√

2Bτ−(δ) − τ−(δ)]

)2
= δ2(E[

√
2Bτ+(δ) + τ+(δ)])−2 ,

where we used Wald’s lemma and the symmetry of the Gaussian distribution. To be able to apply
Theorem 1.1 in [29] we standardize the increments of the random walk

√
2Bδ t dividing them by√

2δ, turning the drift into
√
δ/2, and we get

E[
√

2Bτ+(δ) + τ+(δ)] =
√
δ exp

(
−
√
δ

2
√
π

∞∑
n=0

ζ(1/2− n)

n!(2n+ 1)

(
− δ

4

)n)
.

This implies that

θ
(δ)
X = δ exp

(√ δ

π

∞∑
n=0

ζ(1/2− n)

n!(2n+ 1)

(
− δ

4

)n)
.

We recover the Pickands constant of the Brown-Resnick process (see [135]) as the limit limδ↓0 δ
−1 θ

(δ)
X :

H(0)
X = lim

T→∞

1

T
E
[

sup
0≤t≤T

e
√

2Bt−t
]

= 1.
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Proof of Proposition 3.3.10. Consider the supremum of all points of the limit process N in Theo-
rem 3.3.8:

M = sup
i≥1

Γ
−1/α
i sup

j∈Z
|Qij | .

The sequences (Γi) and (Q(i)) are independent and M = supi≥1 Γ
−1/α
i Vi for the iid sequence Vi :=

supj∈Z |Qij |, i = 1, 2, . . . , whose generic element V has the property E[V α] < ∞. Indeed, V ≤ 1

a.s. by construction. The points (Γ
−1/α
i , Vi) constitute a marked Poisson process NΓ,V with state

space E = (0,∞)× [0,∞) and mean measure given by µ((x,∞)× [0, y]) = x−α FV (y), x > 0, y ≥ 0,
where FV is the distribution function of V . For x > 0 we consider Bx = {(y, v) ∈ E : y v > x}. We
observe that

µ(Bx) =

∫ ∞
v=0

∫ ∞
y=x/v

α y−α−1 FV (dv) =

∫ ∞
0

(x/v)−α FV (dv) = x−α E[V α] .

Therefore we have for x > 0,

P(M ≤ x) = P
(
Γ
−1/α
i Vi ≤ x , i ≥ 1

)
= P (NΓ,V (Bx) = 0)

= e−µ(Bx) = e−x
−α E[V α] .

Thus M is a scaled version of the standard Fréchet distribution, Φα(x) = e−x
−α , x > 0:

P(M ≤ x) = ΦE[V α]
α (x) , x > 0 .

On the other hand, Theorem 3.3.8 and an application of the continuous mapping theorem yield as
n→∞,

P
(
a−1
n Mn ≤ x

)
= P

(
Nn(x,∞) = 0

)
→ P

(
N(x,∞) = 0

)
= P(M ≤ x) , x > 0 .

In view of the definition of the extremal index of the sequence (|Xt|) we can identify

E[V α] = E
[

sup
j∈Z
|Qj |α

]
= E[|QT ∗ |α].

as the value θ|X|. This proves the first part of (3.3.8). The identity

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(|QT ∗ |α > Y −α).

is immediate since Q and Y are independent, and Y −α is U(0, 1) distributed.
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Applying the time-change formula (3.3.4), shifting k to zero, we obtain

θ|X| = E[|QT ∗ |α]

=
∑
k∈Z

E
[ |Θk|α∑

j∈Z |Θj |α
11(T ∗ = k)

]
=

∑
k∈Z

E
[ |Θ−k|α∑

j∈Z |Θj−k|α
11(T ∗ = 0)

]
= P(T ∗ = 0) .

This proves the last identity in (3.3.8).

3.4 Estimation of the extremal index - a short review and a new estimator based on
the spectral cluster process

First approaches to the estimation of the extremal index are due to [88, 161]. Estimators based
on exceedences of a threshold were proposed in [65, 155, 159, 150]. A modern approach to the
maxima method was started in [129]; improvements and asymptotic limit theory can be found in
[16, 21].

We will consider some standard estimators of θX . For the sake of argument we assume that (Xt)

is a non-negative stationary process with marginal distribution F , kn = n/rn is an integer sequence
such that rn →∞, kn →∞, and (un) is a threshold sequence satisfying un ↑ xF .

3.4.1 Blocks estimator

Recall that θX has interpretation as the reciprocal of the expected size of extremal clusters.
This idea is the basis for inference procedures from the early 1990s (see [160, 43]). Clusters are
identified as blocks of length r = rn with at least one exceedance of a high threshold u = un. A
blocks estimator θ̂bl is given by the ratio of the number Kn(u) of such clusters and the total number
of exceedences Nn(u):

θ̂bl
u (r) =

Kn(u)

Nn(u)
:=

∑kn
t=1 11(M(t−1)r+1,t r > u)∑n

t=1 11(Xt > u)
. (3.4.11)

This method requires the choice of block length r and threshold level u satisfying rnF (un)→ 0; if
rn → ∞ does not hold at the prescribed rate θ̂bl is biased. Estimators using clusters of extreme
exceedences were also considered in [88].

A slight modification of the blocks estimator is the disjoint blocks estimator of [161]:

θ̂dbl =
log(1−Kn(u)/kn)

r log(1−Nn(u)/n)
.

Assuming some weak dependence condition on (Xt), the heuristic idea behind the estimator is the
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approximations

(
P(Mr ≤ un)

)kn ≈ P(Mn ≤ un) ≈ F θX n(un),

for a suitable sequence (un). Then, taking logarithms and replacing F (un) and P(Mn > un) by
their empirical estimators Nn(u)/n and Kn(u)/kn, respectively, we obtain

θX ≈ logP(Mn ≤ un)

n logF (un)
=

log(1− P(Mn > un))

n log(1− F (un))

≈ log(1−Kn(u)/kn)

rn log(1−Nn(u)/n)
= θ̂dbl .

Assuming that both Kn(u)/kn and Nn(u)/n converge to zero, a Taylor expansion of log(1 + x) =

x(1+o(1)) as x→ 0 shows that θ̂bl ≈ θ̂dbl. [161] showed that θ̂dbl has a smaller asymptotic variance
than θ̂bl. [150] proposed a sliding blocks version of θ̂dbl with an even smaller asymptotic variance.

θ̂slbl(u, r) =
− log

(
1

n−r+1

∑n−r+1
t=1 11(Mt,t+r ≤ u)

)
Nn(u)/kn

. (3.4.12)

3.4.2 Runs and intervals estimator

[161] proposed the alternative runs estimator. It is based on the limit relation (3.2.4): the
probability P(M`n ≤ un | X0 > un) is replaced by a sample version for some sequence l = ln →∞:

θ̂runs
u (l) =

1

Nn(u)

n−l∑
i=1

11(Xi > un ,Mi+1,i+l ≤ un) . (3.4.13)

Clusters are considered distinct if they are separated by at least l observations not exceeding u. In
[65] a complete study of the runs estimator and the inter-exceedence times is given. The thresholds
(un) need to satisfy rnF (un)→ 1, and ln ≤ rn.

Consider the exceedance times:

S0(u) = 0 , Si(u) = min{t > Si−1(u) : Xt > un} , i ≥ 1 ,

with inter-exceedance times Ti(u) = Si(u) − Si−1(u), i ≥ 1. The sequence (Ti(u))i≥2 constitutes
a stationary sequence. If rn F (un) → 1, [65] noticed that (nT2(u)) converges in distribution to a
limiting mixture given by (1−θX)110(x)+θX (1−e−θX x), x ≥ 0. Calculation yields to the coefficient
of variation ν of T2(u) whose square is given by

ν2 = var(T2(u))/(E[T2(u)])2 = E[T 2
2 (u)]/(E[T2(u)])2 − 1 = 2/θX − 1 ,

leading to overdispersion ν > 0 if and only if θX < 1. Replacing the moments on the left-hand
side by sample versions and adjusting the empirical moments for bias, [65] arrived at the intervals
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estimator

θ̂int(u) = 1 ∧ 2
(∑Nn(u)

i=2 (Ti(u)−1)
)2

(Nn(u)−1)
∑Nn(u)
i=2 (Ti(u)−1)(Ti(u)−2)

. (3.4.14)

See also [155, 159].

3.4.3 Northrop’s estimator

Assume for the moment that (Xi) is iid and F is continuous. Then F (X) is uniform on (0, 1).
Hence for r = rn and x > 0,

P
(
− rn logF (Mr) > x

)
= P(F (Mr) ≤ e−x/r)

= P( max
i=1,...,rn

F (Xi) ≤ e−x/r)

=
(
P(F (X) ≤ e−x/r)

)r
= e−x .

For a weakly dependent sequence (Xi) with marginal distribution F , assume the existence of the
extremal index for (F (Xt)) which, by monotonicity of F , coincides with θX :

P
(
− rn logF (Mr) > x

)
= P( max

i=1,...,rn
F (Xi) < e−x/r)→ e−θX x , x > 0 .

Thus the random variables (−rn logF (Mr)) are asymptotically Exp(θX) distributed. For iid Exp(θX)

random variables the maximum likelihood estimator of θX is given by the reciprocal of the sample
mean. These ideas lead to Northrop’s estimators [129]. Mimicking the maximum likelihood estima-
tor of iid Exp(θX) data for a stationary sequence (Xt), one considers the quantities−rn logF (Mt,t+r),
t = 1, . . . , n− rn, and constructs sliding or disjoint blocks estimators of θX :

θ̂Nsl(r) =
( 1

n− r + 1

n−r+1∑
t=1

(−r logFn(Mt,t+r))
)−1

, (3.4.15)

θ̂Ndbl(r) =
( 1

[n/r]

[n/r]∑
i=1

(−r logFn(Mr (i−1)+1,r i))
)−1

. (3.4.16)

Here Fn is the empirical distribution function of the data. This particular choice of estimator of
F depends on the whole sample, hence introduces additional dependence. This fact requires an
optimal choice of block length rn for implementation.

3.4.4 An estimator based on the spectral cluster process

In this subsection we consider a stationary non-negative regularly varying process (Xt) with
index α > 0, spectral tail process (Θt) and normalizing sequence (an) satisfying nP(X > an)→ 1.
Proposition 3.3.10 yields the alternative representation θX = E[QαT ∗ ] where (Qt) is the spectral
cluster process of (Xt). We will construct an estimator based on this identity.
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We consider sums and maxima over disjoint blocks of size r = rn = o(n):

S
(α)
i,r :=

i r∑
t=(i−1) r+1

Xα
t , Mi,r = max

t=(i−1)r+1,...,i r
Xt , i = 1, . . . , kn .

The following limit relation is proved in [26]:

lim
n→∞

E
[
Mα

1,r/S
(α)
1,r |S

(α)
r > aαn

]
= E[QαT ∗ ], (3.4.17)

which is based on large deviation results for regularly varying stationary sequences; see for example
[26]. Now we build an estimator of θX from an empirical version of the left-hand expectation. Define
the corresponding estimator by

θ̂scp
v (r) :=

∑kn
i=1

Mα
i,r

S
(α)
i,r

11
(
S

(α)
i,r > v

)
∑kn

i=1 11
(
S

(α)
i,r > v

) . (3.4.18)

Here we choose v = S
(α)
(s),r, the sth largest among (S

(α)
i,r )i=1,...,kn for an integer sequence s = sn such

that sn = o(kn).

3.5 A Monte-Carlo study of the estimators

We run a short study based on 1 000 simulated processes (Xt)t=1,...,5000 for comparing the perfor-
mances of some of the aforementioned estimators. First, (Xt) is an AR(1) process with parameter
ϕ = 0.2 and iid student(1) noise, resulting in a regularly varying process with index 1 and θ|X| = 0.8.
Second, we consider the regularly varying solution of an affine stochastic recurrence equation with
iid logAt ∼ N(−0.5, 1), Bt ≡ 1, and θX ≈ 0.2792; see (3.3.9).

Figures 3.5.1 and 3.5.2 show boxplots of the simulation study.

• θ̂bl and θ̂runs are functions of the block and run lengths, respectively. u is the largest [n0.6]th
upper order statistic of the sample.

• θ̂slbl is a function of r. u is the rth upper order statistic of the sample.

• θ̂int is a function of x. u is the [n/x]th upper order statistic.

• θ̂Nsl, θ̂scp are functions of r.

• For θ̂scp we choose s = [n0.6/r]. The tail index α is estimated by the Hill estimator from [83]
based on [n0.8] upper order statistics of the sample.

According to the folklore in the literature, Northrop’s estimator θ̂Nsl outperforms the classical
estimators (runs, blocks); it has smallest variance but it may be difficult to control its bias. Our
experience with θ̂scp shows that it performs better than the other estimators as regards the bias,
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especially when θX is small. The intervals estimator θ̂int is preferred by practitioners because the
choice of the hyperparameter x is robust with respect to different values of θX . This cannot be
said about the other estimators with the exception of θ̂scp. In our experiments with sample size
n = 5000, the choices x = 32 and r = 64 work well for θ̂int and θ̂scp, respectively. We did not
fine-tune the hyperparameter s in θ̂scp in our experiments.
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Figure 3.5.1. Boxplots based on 1 000 simulations for the estimation of θ|X| = 0.8 in the AR(1)
model with ϕ = 0.2 and iid student(1) noise.
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Figure 3.5.2. Boxplots based on 1 000 simulations for the estimation of θX ≈ 0.2792 for the solution
to a stochastic recurrence equation.
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Chapter 4: Stable sums to infer high return levels of multivariate rainfall time
series

Abstract

We introduce the stable sums method to infer extreme return levels for
stationary time series in a multivariate context. We base our method
on large deviation principles for regularly varying time series, allow-
ing the incorporation of time and space extreme dependencies in the
analysis. First, we avoid classical declustering steps as our strategy
is implemented at independent and dependent observations from the
stationary model in the same way. Already in the univariate setting,
a comparison with the main estimators from extreme value theory,
where detecting clustering in time is required, shows improvement of
the coverage probabilities of confidence intervals obtained from our ap-
proach against its competitors. Also, further numerical experiments
point to a smaller mean squared error with the multivariate stable
sums method than its component-wise implementation. We apply our
method to infer high return levels of daily fall precipitation amounts
from a national network of weather stations in France.

keywords: Environmental time series; multivariate regular variation;
stable distribution; stationary time series; cluster process.
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Main contributions

I address (Quest. 4) in this Chapter. The following are my main contributions:

- (Quest. 4): This chapter presents the stable sums method for inference of multivari-
ate heavy-tailed return levels. Numerical experiments illustrate the robustness of these
estimates with respect to time dependencies.

Consider a sample X[1,n] from a heavy-tailed stationary time series (Xt) with (tail) index
α > 0. For inference purposes, consider an integer sequence (bn) such that n/bn → +∞,
as n→ +∞, and the sub-sample

∑bn
t=1|Xt|α ,

∑2bn
t=bn+1|Xt|α , ,

∑n
t=n−bn+1|Xt|α. (4.0.1)

Notice the large deviations principles in (2.2.1) yield the approximation

P(X0(j) > xbn) ∼ m(j)(bn)−1P(
∑bn

t=1 |Xt|α > xαbn), n→ +∞, (4.0.2)

for a suitable sequence (xn) satisfying nP(|X0| > xn)→ 0, as n→ +∞, where X0(j) is
the j-th coordinate ofX0, andm(j) ∈ (0, 1] traces the spatial features ofX0 (see (4.1.3)).
Since |X1|α is regularly varying of unit (tail) index, the central limit theorem of heavy-
tailed increments in Theorem 4.7.1 holds. Then, replacing m(j) by an estimate of this
constant, we can model the right-hand side of Equation (4.0.2) using stable distributions.

Algorithm 1 fits a stable distribution to the sub-sample in (4.0.1), replacing α with
an estimate α̂n, and then extrapolates high quantiles using (4.0.2). To tune the sum
length parameter (bn), Algorithm 1 assesses goodness-of-fit with the stable limit with
unit stable parameter.

Section 4.4 implements this new strategy for multivariate high quantile estimation to
the data set of daily rainfall records in France, already introduced in Chapter 1.
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4.1 Introduction

Nowadays, extreme value theory [34] is frequently applied to meteorological time series to cap-
ture extremal climatological features in temperatures, winds, precipitation and other atmospheric
variables [104, 166, 171]. For example, due to its high societal impacts in terms of flooding, heavy
rainfall have been analyzed at various spatial and temporal scales [93]. In particular, storms/fronts
duration and spatial coverage can produce potential temporal and spatial dependencies among
recordings from nearby weather stations [92]. In this multivariate context, the analysis of consecu-
tive extremes, even in the stationary case, can be theoretically complex [26, 9]. Although marginal
behaviors of heavy rainfall is today well modeled, the temporal dynamic is rarely taken in account
in applied studies, especially for multivariate time series [61, 170, 1, 38, 64]. To produce accurate
high return level estimates from multivariate time series of extreme daily precipitation, we propose
an approach to jointly incorporate the temporal dependence and the multidimensional structure
among heavy rainfall. This joint modeling appears necessary to perform a full risk assessment, as
ignored correlations may lead to erroneous confidence intervals. The latter is particularly important
when the practitioner has to provide them about extreme occurrences, i.e. extrapolating beyond the
largest observed value.

4.1.1 Motivation

For our case study, we analyze daily precipitation records from a national network in France
from 1976 to 2015. To contrast different climate types, we choose three stations in three different
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regions in France: oceanic in the northwest (Brest, Lanveoc, and Quimper), mediterranean in the
south (Hyeres, Bormes-les-Mimosas and Le Luc), and continental in the northeast (Metz, Nancy,
and Roville). Concerning seasonality, we will focus on Fall (September, October, and November) as
heavy rainfall has been the strongest in France during this season. Concerning marginal behaviors,
records within the same region reach similar precipitation intensity levels. For example, the south
of France registers higher precipitation amounts than the other two regions, but the south attains
high levels at a similar rate; see Figure 4.1. We assume that heavy-tailed margins from the same
region are asymptotically equivalent, up to a constant. This is a reasonable modeling assumption
if we believe extreme episodes within a region have the same driver, let’s say, a big storm.
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Figure 4.1: Scatter plots of fall daily rainfall in France from 1976 to 2015. The top, middle, and
bottom panels refer to three climatological regions: continental (northwest), oceanic (west), and
mediterranean (south), respectively. Simultaneous exceedances of the 95-th order statistic of the
sample of daily maxima of a region are in black.

While it is reasonable to assume independence between regions, the stations’ spatial proximity
within a region imposes a tri-variate analysis by region. Figure 4.1 illustrates how high rainfall val-
ues often co-occur at two close stations pointing to a spatial dependence of large values. Concerning
the temporal ties, we see that at all nine stations, recording high rainfall levels at one day is often
followed by measures from rainy days later since an extreme weather condition can last numerous
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hours. This extremal dependence in time is well illustrated by the temporal extremogram1 intro-
duced in [44] as can be seen in Figure 4.2. Overall, we can explain the spatial and temporal links by
the weather dynamics. As mentioned, It is reasonable to think that the main climatological event
impacting an area often has the same source but is manifested at different time lags and locations.
Our goal is to improve inference of its extremal features by aggregating all measurements collected
of it in space and time. We do so by introducing the stable sums method.
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Figure 4.2: Empirical temporal extremogram of the 95-th order statistic of fall daily rainfall in
France from 1976 to 2015. The first, middle and last correspond to three climatological regions
as in Figure 4.1. As a baseline, the extremogram takes the value pointed by the dotted line on
independent time lags.

4.1.2 Asymptotics of the stable sums method

The practical goal of this study is to infer the 50 years return levels at each weather station,
while taking in account the tri-variate dependence and the temporal memories. The theoretical
added value is that we address the extremal multivariate structure without assuming temporal
independence. In particular, we do not need to decluster the 3-dimensional time series to make
observations independent in the upper tail. Declustering is particularly challenging in a multivariate
context [146]. To bypass these hurdles, we build on a stable sum method. This approach takes its
roots in large deviation principles and central limit theory for weakly dependent regularly varying
time series [59]. In terms of notations, (Xt)t∈Z will always represent a stationary time series with
tail index α > 0, where Xt = (Xt(1), · · · , Xt(d)) takes values in Rd, that we endow with a norm | · |.
To model heavy-tailedness, we assume all vectors (Xt)|t|=0,...,h are multivariate regularly varying,
h ≥ 0; see Equation (4.2.7) for a precise definition. In this setting, under short-rage dependence
conditions [10], preventing extreme records to affect indefinitely future ones, the following large
deviation approximation holds: for any p ≥ α, j = 1, . . . , d,

P(X0(j) > xn) ≈ m(j) (n c(p))−1 P
(
S1,n(p) > xpn

)
, n→ +∞, (4.1.3)

where X0(j) is the jth–coordinate of X0, S1,n(p) =
∑n

t=1 |Xt|p, (xn) corresponds to a suitable
sequence verifying nP(|X0| > xn)→ 0 as n→ +∞, m(j) takes values in [0, 1], for all j = 1, . . . , d,

1The temporal extremogram is defined over time lags by t 7→ limx→+∞ P(Xt > x |X0 > x).

88



and p 7→ c(p) is a decreasing function. We confer to [26] the proof of (4.1.3) and its extension for
α/2 < p < α.

The practical key aspect of (4.1.3) is that, whenever the constants m(j) and c(p) are adequately
estimated, all marginal features of the multivariate vector X0 can be easily deduced from the single
univariate sum S1,n(p). In practice, this means that any extreme quantile of a weather station, say
j, can be directly deduced from the sum S1,n(p) computed over the group of three neighbouring
stations, albeit the knowledge of the two constants m(j) and c(p) in (4.1.3). To interpret these two
quantities, we write them as follows

lim
n→+∞

P(X0(j) > xn)

P(|X0| > xn)
= m(j), lim

n→+∞

P((S1,n(p) )1/p > xn)

nP(|X0| > xn)
= c(p). (4.1.4)

The ratio between the norm feature P(|X0| > xn) and the marginal feature P(X0(j) > xn) does not
depend on t (as t = 0), and consequently, the constants m(j) trace back the d-dimensional structure
of extremes, but not the temporal dynamic. In contrast, the constant c(p) captures, throughout
the `p–norm, the temporal clustering among extremes when compared to independent observations.
Recall for our case study, the three stations within a region are assumed to have the same tail
index and margins within the same region are assumed to be asymptotically equivalent, up to a
constant. This is in compliance with the left-hand of (4.1.4). Practically, this is justified by the
close proximity among the three stations within each of our region. Theoretically, the multivariate
Breiman’s theorem [72] tells us that tail equivalences can be obtained whenever a multiplicative or
linear lighter-tailed noise impacts the variables at hand.

We recall [26] also showed c(α) = 1, regardless of the temporal ties. Thus our goal is to motivate
the choice p = α in (4.1.3). This modelling strategy obviously implies that the index of regular
variation, α, needs to be estimated, a necessary step in any Pareto based quantile estimation. The
main challenge now is to infer the distribution of S1,n(p), for p > 0, from the sampled multivariate
vector (X1, . . . ,Xn). To reach this goal, we consider the following partial sums from disjoint time
periods of length bn as

S1,bn(p)︸ ︷︷ ︸
:=

∑bn
t=1 |Xt|p

, S2,bn(p)︸ ︷︷ ︸
:=

∑2 bn
t=bn+1 |Xt|p

, · · · , Sbn/bnc,bn(p)︸ ︷︷ ︸
:=

∑bn/bnc
t=bn/bnc−bn+1

|Xt|p

, (4.1.5)

with the convention Sbn(p) := S1,bn(p). The new sequence of variables (St,bn(p))t=1,...,bn/bnc provides
us a transformed dataset from which the inference of x 7→ P(S1,bn(p) > x) becomes possible. The
natural question is then what is the appropriate model for Sbn(p). As Sbn(p) is a sum of regularly
varying increments, then, assuming n/bn → +∞ as n→ +∞, the central limit theorem for weakly
dependent stationary time series holds. There exists positive and real sequences (an(p)), (dn(p)),
such that (Sbn(p) − dbn(p))/abn(p) converges to a stable distribution with stable parameter α/p,
as the sums length bn goes to infinity. Two important elements can be highlighted from this
convergence. First, the family of α-stable distributions (see Section 4.2.1) appears as the natural
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parametric family to fit the sequence (St,bn(p))t=1,...,bn/bnc. Second, the aforementioned choice of
taking p = α is reinforced as the stable parameter α/p equals to one for this choice. This produces
a solid yardstick to select the right bn. In other words, an appropriate selection of bn corresponds
to the case where the distribution of (St,bn(α))t=1,...,bn/bnc follows a stable distribution with a stable
unit parameter. The algorithm behind this strategy will be explained in Section 4.2.3.

Notice that in our methodology, the choice of p in c(p) is up to the practitioner. The special
case of p =∞ has a strong connection with the so-called declustering technique [65]. Typically, the
constant c(∞) equals the extremal index of the time series (|Xt|)t∈Z, which has been understood
as the reciprocate of the mean number of consecutive high levels recorded in a short period; cf.
[109, 110]. For univariate time series, the conventional choice of taking p = ∞, describes block of
maxima, which can be modeled with classical extreme value theory based on generalized extreme
value distributions [34]. However, it brings the difficult problem of inferring the extremal index.
The exceedances approach built on generalized Pareto distributions also needs to be corrected in
this setting [30]. Typically, applied studies base inference only on the maxima of clusters [167],
but if c(∞) < 1, estimates of marginal features are biased [60, 62, 63]. Instead, choosing p = α

completely bypasses the estimation of c(p) or any declustering strategy.
From a theoretical point of view, our method is motivated by equation (4.1.3) proven in [26].

We then use central limit theory to justify the parametric model for the partial sums in (4.1.5).
Borrowing classical telescopic sum arguments, we prove the limit with stable parameter one in
Section 4.6.2, which interests us as we take p = α. This proof uses the cluster process defined in
[26]. Our proof simplifies the assumptions in [5] and [9] who might have overlooked the unit stable
domain, usually receiving less attention. Overall, (4.1.3) justifies inference of extreme quantiles in
the scope of the sequence of threshold levels (xbn). The order of magnitude of the sequence (xbn) was
studied for classical examples as linear processes in [120] and for solutions to recurrence equations
in [24, 106]. For further references on large deviation probabilities for weakly dependent processes
with no long-range dependence of extremes we refer to [40, 98, 97, 121]. Central limit theory for
stationary weakly dependent sequences was first studied in [40] using weak convergence of point
processes. Further, [98, 97] show it using classical telescopic sum arguments and large deviation
limits. A modern treatment is conferred to [5].

Concerning the implementation of our stable sum method, Section 4.2 details the ingredients
of our algorithm and its assumptions. The important step of setting the inputs of our alogrithm is
explained in Section 4.2.3. In particular, the estimation of the stable parameter, α, is treated there.
It is followed by the description of our algorithm. Our simulation study is described in Section
4.3. Univariate and multivariate cases are investigated. Comparisons with other approaches are
implemented and commented. In Section 4.4, the rainfall dataset introduced with Figures 4.2 and
4.1 is analyzed in depth. In section 4.5 we discuss future perspectives. The theoretical aspects of
our method are detailed in Section 4.6.
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4.2 Stable sums algorithm

4.2.1 Preliminaries

Let X = (X(1), . . . , X(d)) be a random vector taking values in Rd. For T > 0, the multivariate
T–return level is zT = (zT (1), . . . , zT (d)), where zT (j) is the T–return level associated to the j-th
coordinate: zT (j) = inf{z(j) : P(X(j) > z(j)) ≤ 1/T}. We recall below the definition and basic
properties of stable distributions.

Definition 4.2.1. The random variable ξa := ξa(σ, β, µ) follows a stable distribution with parame-
ters (a, σ, β, µ) if and only if, for all u ∈ R,

E
[

exp{i u ξa}
]

=

exp{−σa|u|a(1− i β sign(u) tan πa
2 ) + i µ u} if a 6= 1,

exp{−σ|u|(1− i β sign(u) 2
π log |u|) + i µ u} if a = 1,

(4.2.6)

where a ∈ (0, 2] is the stable parameter, σ ∈ [0,+∞) is a scale parameter, β ∈ [−1, 1] is a skweness
parameter, and µ ∈ R is a location parameter.

Classical examples of stable distributions are the Gaussian distribution with a = 2 and β = 0,
the Cauchy distribution with a = 1 and β = 0; and the Lévy distribution with a = 1/2 and β = 1.
Stable distributions satisfy the reflection property: if ξa := ξa(1, β, 0) is a stable random variable
with parameters (a, 1, β, 0), then −ξa is a stable random variables with parameters (a, 1,−β, 0).
The stable distribution is symmetric when β = 0, and has support in R when |β| 6= 1. If β = 1

there are three cases: if a < 1 then the support of its density admits a finite lower bound. If
a = 1 the density is supported in R but only the right tail is regularly varying. Otherwise, the
stable distribution admits two heavy tails. A full summary on stable distributions can be found in
[67, 130, 151].

4.2.2 Model assumptions

In the remaining of the article we assume (Xt)t∈Z be a regularly varying time series taking values
in (Rd, | · |), with index of regular variation α > 0; cf. [10]. This means there exists an Rd-valued
time series (Θt)t∈Z verifying |Θ0| = 1 a.s. and

P((Xt)|t|=0,...,h ∈ · | |X0| > x)
d−→ P(Y (Θt)|t|=0,...,h ∈ ·), x→ +∞, (4.2.7)

where Y is (α)–Pareto distributed, P(Y > y) = y−α, for all y > 1, independent of (Θt)t∈Z. We fix
| · | to be the supremum norm, i.e. |X0| := maxj=1,...,d |X0(j)|, but any choice of norm is possible
under minor modifications. We call (Θt)t∈Z the spectral tail process.

For now, we suppose the approximation in (4.1.3) holds and the renormalized process of partial
sums Sbn(p) converges to a stable distribution with stable parameter a = α/p as n → +∞. These
assumptions are satisfied for classical examples of weakly dependent regularly varying time series.
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We postpone the asymptotic theory behind it to Section 4.6 (see Lemma 4.6.2 and Proposition 4.6.3).
Motivated by Proposition 4.6.3, we also set the skweness parameter β = 1 to simplify computations.

4.2.3 Choice of the algorithm inputs

To construct the time series (St,bn(α))t=1,...,bn/bnc defined in (4.1.5), we need to determine the
sum length, bn, and α. Also, the indexes of spatial clustering m(j) are required to use (4.1.3).

We estimate the index of regular variation α using the unbiased Hill estimator of [83], see their
Equation (4.2) of α̂n that varies in function of order statistics k. Fixing the choice of k one obtains
a point estimate2 α̂n = α̂n(k).

To select the temporal window bn, we recall that the renormalized partial sums, that we denoted
(St,bn(p))t=1,...,bn/bnc, should follow, for p = α, a stable distribution with stable parameter a = 1.
So, for a given bn, we run a ratio likelihood test for the null hypothesis (H0) : a = 1 and we only
keep pairs α̂n, bn such that the null hypothesis is not rejected at the 0.05 level. This heuristic allows
one to discard an unsuitable choice for the couple α̂n, bn.

Concerning the inference ofm(j), we recall that (4.1.4) and (4.2.7) imply thatm(j) = P(YΘ0(j) >

1) = E[(Θ0(j))α+], where Y is (α)-Pareto distributed, independent of the d–dimensional random
variable Θ0, and |Θ0| = 1 a.s. For a review on inference of the spectral measure Θ0, we refer to
[26, 39, 50]. In this context, given α̂n, all m(j) are simply estimated by the following empirical
means

m̂n(j) :=
1

k

n∑
t=1

(Xt(j))
α̂n
+

|Xt|α̂n
11(|Xt| ≥ |X(k)|), (4.2.8)

where j = 1, . . . , d, |X(k)| is the k–th largest order statistic from the norm sample that we fix to be
the 95–th empirical quantile for the remaining of this article.

4.2.4 Algorithm

The multivariate T–return level is estimated applying Algorithm 1 to (Xt)t=1,...,n. A component-
wise estimator is calculated applying Algorithm 1 to (Xt(j))t=1,...,n, j = 1, . . . , d. If d = 1 then
m(1) = 1 and both estimates coincide. Confidence intervals are obtained by sampling parametric
bootstrap replicates from a stable distribution with parameters θ̂, as in line 5 from Algorithm 1.
For each replicate, we evaluate a stable quantile at (1− (m̂n(j)T )−1)bn , for j = 1, . . . , d, and return
the 1/α̂n–power of the computed quantile. We then use the percentile bootstrap method with a
significance level at 0.05 to obtain the confidence intervals. We refer to [54, 55, 56, 57] for large-
sample theory of the maximum likelihood estimator for stable distributed sequences. Bounds for
the derivatives of the density function in terms of the parameters (x; a, σ, µ) have been computed
therein; see also [131] for an overview on maximum likelihood methods for stable distributions.

2Equation (4.2) in [83] yields to an estimate α̂n(k), where k is a fixed number of higher order statistics. We tune
the second order parameter ρ̂ ≤ 0 to the median value of kρ 7→ ρ̂(kρ), for 2 ≤ kρ ≤ k; see [76, 83]. We then choose
point estimate from a steady portion of the trajectory plot of k 7→ α̂n(k).
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Algorithm 1: Stable sums estimator of the multivariate T–return level
Input: (Xt)t=1,...,n, bn, α̂

n, m̂n, see Section 4.2.3;
1 compute (St,bn(α̂n))t=1,...,bn/bnc as in (4.1.5) with p = α̂n,
2 fit maximum likelihood stable parameters: θ̂, and θ̂a=1 fixing a = 1,
3 test the null hypothesis (H0) : a = 1 using ratio likelihood test,;
4 if (H0) is not rejected: then
5 θ̂ = θ̂a=1,
6 if d > 1 then
7 for j = 1, . . . , d do
8 calculate qT (j) a θ̂–stable quantile at (1− (T m̂n(j) )−1)bn ; see (4.1.3),
9 else

10 calculate qT (1) a θ̂–stable quantile at (1− 1/T )bn .
11 return ẑnT :=

(
(qT (1))1/α̂n , . . . , (qT (d))1/α̂n

)
,

12 else
13 choose a different pair of parameters α̂n, bn.

4.3 Simulation study

4.3.1 Models

We consider the following time series in our numerical experiment.
Burr model: Let (Xt)t=1,...,n be independent random variables distributed as F with

F (x; c, κ) = 1−
(
1 + xc

)−κ
, x > 0, (4.3.9)

c, κ > 0 are shape parameters thus X1 is univariate regularly varying with index α = 1
cκ > 0.

Fréchet model: Let (Xt)t=1,...,n be independent random variables distributed as F with

F (x;α) = e−x
−α
, x > 0, (4.3.10)

then X1 is univariate regularly varying with tail index α > 0.
ARMAX model: Let (Xt)t∈Z satisfy

Xt = max
{
λXt−1,

(
1− λα

)1/α
Zt
}
, t ∈ Z, (4.3.11)

where λ ∈ [0, 1), and (Zt)t∈Z are independent identically distributed Fréchet innovations with tail
index of regular variation α > 0. Then (Xt)t∈Z is regularly varying with same index of regular
variation but with extremal index equal to 1− λα.
mARMAXτ model: Let (Xt)t∈Z satisfy

Xt(j) := max
{
λ(j)Xt−1(j),

(
1− (λ(j))α

)1/α
Zt(j)

}
, t ∈ Z, (4.3.12)
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for j = 1, . . . , d, where λ takes values in [0, 1)d and (Zt)t∈Z are independent identically distributed
vectors from a Gumbel copula with Fréchet marginals and index of regular variation α > 0. More-
over, Z1 is distributed as G defined by

G(x;α, τ) = e−
(

(x(1))−(α/τ)+(x(2))−(α/τ)+···+(x(d))−(α/τ)
)τ
, (4.3.13)

for x ∈ Rd, and τ ∈ [0, 1] that we refer as the coefficient of spatial dependence. The stationary
solution (Xt)t∈Z is multivariate regularly varying with index of regular variation α > 0; cf. [68] for
more details.

Moreover, straightforward computations from (4.3.13) yield

m(j) = lim
x→+∞

P(X0(j) > x)

P(|X0| > x)
= lim

x→+∞

1− e−1/xα

1− e−d τ/xα
=

1

d τ
< 1, (4.3.14)

for all j = 1, . . . , d. Then, from (4.3.14) we recover the symmetric properties of the Gumbel copula as
m(1) = · · · = m(d) = 1/dτ . We can also see from (4.3.14) that the coefficient of spatial dependence
τ ∈ [0, 1] plays a key role while measuring the spatial dependence of extremes. Indeed, similar
calculations allow one to compute the spatial dependence parameter between any two marginals,
say j, as

lim
x→+∞

P(X0(j) > x |X0(j′) > x) = 2− 2τ , (4.3.15)

thus τ = 1 points to asymptotic independence of extremes, whereas τ = 0 indicates complete
dependence of extremes.

4.3.2 Numerical experiment

We perform a Monte Carlo simulation study for two main purposes. We aim to compare the
stable sums method commonly used method based on declustering detailed Section 4.3.4. We also
aim to evaluate the multivariate approach compared to the component-wise approach.

We estimate return levels zT for periods T = 20, 50, 100 years corresponding to the 99.95-th,
99.98-th and 99.99-th quantiles. We simulate 1000 trajectories of length n = 4000 from the models
presented in Section 4.3.1 with parameters:

1. Burr(c, κ) model with (c, κ) = (2, 2) in (4.3.9).

2. Fréchet(α) model with α = 4 in (4.3.10).

3. ARMAX(λ) model with α = 4, for both λ = 0.7 and λ = 0.8 in (4.3.11).

4. mARMAXτ (λ) model taking values in [0,+∞)3 with α = 4 and λ = (0.7, 0.7, 0.7) in (4.3.12),
and for τ = 0.1, 0.2, . . . , 0.9, in (4.3.13).

Notice α = 4 in all the models 1− 4. This corresponds to a typical rainfall tail index.
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4.3.3 Implementation of stable sums method

We fix the index of regular variation to be α̂n = α̂n(k) (see Section 4.2.3 for details) with k = n0.7

for the Burr model and k = n0.9 for the Fréchet, ARMAX and mARMAX models. Now notice that
plugging in the estimates α̂n, m̂n in Algorithm 1 we can run the stable sums method as a function
of the sum lengths bn. In this way, we implement our method for the sum lengths bl = 2i, with
i = 4, 5, 6, 7. We sample R = 100 parametric bootstrap replicates to compute confidence intervals
for the estimated return levels. For the multivariate models, we compute both the multivariate and
component-wise stable sums estimator.

4.3.4 Implementation of classical methods

For the univariate models, we also run the peaks over threshold and block maxima methods [34].
We model extremal time-dependence using the theory of clusters of exceedances; see [40, 26, 108].
A brief description of both implementation procedures is given below.

The peaks over threshold method models exceeded amounts over a high threshold with a gen-
eralized Pareto distribution; see chapters 4 and 5 in [34] for an overview. In our case, we fix the
threshold level to be the 95–th empirical quantile. To adjust confidence intervals, we keep only the
largest peak from each clusters of exceedances, and fit a Pareto model to the exceeded amounts from
this sample. For cluster detection, we follow the ideas in [65]. We use the code in the R-package
extRemes 2.0.12, and our implementation follows the guide in [73]. We compute delta-method
confidence intervals on the declustered sample.

The block maxima method models the largest records form consecutive observations with a gen-
eralized extreme value distribution; see chapters 3 and 5 in [34] for an introduction. We implement
it over disjoint blocks of length blBM = 20. We estimate the extremal index using the interval’s
estimator in Ferro et al. [65], tuned with the 95–th empirical quantile. We fit a generalized ex-
treme value distribution, perform the extremal index estimation, and the extrapolation using the
R-package extRemes 2.0.12; see also the guide [73] for details. We compute delta-method confidence
intervals for return levels.

4.3.5 Simulation study in the univariate case

Estimation of the index of regular variation, as detailed in Section 4.3.3, yields unbiased estimates
for the univariate models (plots can be available upon request).

We can see from Figure 4.3 that the median estimate of the 50 years return level with the
peaks over threshold method underestimates the real value when implemented at the dependent
models and this underrates the risk. This bias was already observed in [63, 63], and it avert us
from inferring marginal features from the maxima of clusters; see [60]. In comparison, our block
maxima implementation is unbiased for all four models. However, it has a larger spread compared
to the stable sums methods. Our method gives satisfactory results and, as expected, the choice of
the sum length can be seen as a trade-off between bias and variance. We conclude that Algorithm 1
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works fine coupled with a good estimate of the index of regular variation as the one detailed in
Section 4.2.3 for all models.

22/10/21 10:41 Rplot01.svg

file:///Users/Buritica/Dropbox/Mac/Desktop/Rplot01.svg 1/1

Figure 4.3: Boxplots of estimates ẑnT with different methods such that stable 16 refers to the stable
sums method with sum length bl = 24 = 16. Dotted lines indicate the true values.

To measure the accuracy of the confidence intervals of all methods, we compute the number
of times they capture the correct value. One must keep in mind that for the stable sums method
Algorithm 1 only returns an estimate if the test of the stable parameter equal to one is accepted.
We summarize the sample coverage probabilities and provide the proportion of acceptance of the
ratio test among the 1000 simulated trajectories from each model in Table 4.1. The coverage results
are not reliable when the proportion of test acceptance is small, however, it increases as the sum
length increases. As a result, we notice from Table 4.1 that we automatically discard the very small
sum lengths.

To sum up, we read from Table 4.1 that coverage probabilities are unsatisfactory for the peaks
over threshold method, specially for the models with time dependence of extremes. The coverage
for the block maxima method is not well calibrated and gives poor results for the Burr model which
is the only model with a marginal distribution that does not belong to the family of generalized
extreme value distributions. In this manner, we aim to point at the deficiency of the classical
methods on small sample sizes. Instead, the stable sums method outperforms the block maxima
and peaks over threshold methods for sum lengths between 32 and 64, where acceptance of the ratio
likelihood test is significant.
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Table 4.1: Table of coverage probabilities. The value in parenthesis the ratio test (H0) : a = 1
acceptance proportion. In bold we highlight the optimal choice of sum length for the stable sums
method. In our study, a precise coverage should be at 0.95.

years 20 50 100 20 50 100
Burr(2,2) Fréchet(4)

block maxima .91 .89 .87 .93 .93 .92
peaks o. threshold .87 .85 .83 .89 .87 .86

stable 16 (.06) .89 .85 .80 (.53) .94 .95 .95
stable 32 (.51) .93 .94 .95 (.83) .96 .96 .96
stable 64 (.85) .95 .95 .97 (.90) .96 .99 .99
stable 128 (.94) .87 .98 .98 (.91) .82 .99 .99

Armax(0.7) Armax(0.8)

block maxima .93 .93 .92 .92 .91 .91
peaks o. threshold .78 .79 .79 .66 .72 .74

stable 16 (.21) .92 .94 .93 (.12) .80 .82 .84
stable 32 (.66) .90 .90 .91 (.55) .87 .89 .90
stable 64 (.89) .93 .96 .96 (.85) .90 .93 .93
stable 128 (.94) .85 .97 .98 (.92) .83 .95 .96

4.3.6 Simulation study in the multivariate case

We inquiry now the performance of the multivariate, as opposed to the component-wise, stable
sums estimator as we aim to capture the spatial features of extremes. We compute both estimates
for the samples from the mARMAXτ model with λ = (0.7, 0.7, 0.7) as in (4.3.12); see Section 4.3.2
for details. We compare the performance of both estimators at each coordinate, j = 1, 2, 3, in terms
of the relative percentage change of the mean squared error. More precisely, for each coordinate, we
compute mean squared errors of the multivariate and univariate estimates denoted MSEMV and
MSEUV , respectively, and relate them by

relative percentage change of MSE =
MSEUV −MSEMV

MSEUV
× 100. (4.3.16)

We also compute the relative percentage change of the squared variance, and of the absolute bias,
from equations similar to (4.3.16). Large positive values point to an improvement of the multivariate
estimator, while negative values detect a deterioration of its performance.

We omit details on coverage probabilities as they both have similar coverage as the ARMAX(0.7)

univariate model (as expected from (4.3.12)). We analyze in detail estimates zT (3) of the T = 50

years return level as similar results hold for all other coordinates. The relative percentage changes
are plotted in figure 4.4 as a function of the spatial dependence coefficient τ . We notice that for the
sum lengths 32 and 64 the multivariate outperforms the univariate estimator. Indeed, the choice of
sum length 64 was optimal for the ARMAX(0.7) univariate model as pointed out by Table 4.1.
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Moreover, for values of τ close to 0.5, the multivariate estimator has an outstanding improve-
ment, mainly due to a diminution of bias. As τ approaches 1, and the model approaches the
regime of asymptotic independence, the multivariate also outperforms the component-wise estima-
tor though the choice of sum length becomes delicate. In contrast, the amelioration is less evident
for values of τ close to 0. Recall from equation (4.3.15) that τ = 0 points to asymptotic dependence
and thus m(j) = 1/dτ = 1 can be difficult to estimate. We conclude that in general the multi-
variate estimator is preferable to the component-wise approach. Identifying, both theoretically and
practically, which spatial features efficiently improve the multivariate inference procedures requires
further investigation.
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Figure 4.4: Relative percentage change of the multivariate against the component-wise estimator
(for the 50 years return level zT (3) estimator) of the: squared variance, absolute bias and mean
squared error as in (4.3.16), from left to right.

4.4 Case study of heavy rainfall in France

We recall the data set of fall daily rainfall introduced in Section 4.1 and our goal of computing
the expected level of daily rain to be exceeded in the next 50 years at all the nine weather stations
in France. We conduct our analysis separately over the three different regions: northwest, south,
and northeast of France. Fall observations from the same region are modelled as a 3-dimensional
sample (Xt)t=1,...,n from a stationary multivariate regularly varying time series denoted Xt :=

(Xt(1), Xt(2), Xt(3)), t ∈ Z. We include both wet and dry days in our daily observations. In this
setting, our goal of estimating the expected fall daily rainfall level to be exceeded in the next 50
years at each station traduces to estimating the 99.98-th quantile of X0(j), for j = 1, 2, 3.

4.4.1 Implementation

To study the samples (Xt)t=1,...,n obtained from each region, we implement the stable sums
method as a function of the number of order statistics k in the following way. For k = 150, 250, 350,
450, 550, first we compute estimates α̂n(k) as described in Section 4.2.3. Then, for each estimate
we search the sum length larger than 32 for which the p−value of the ratio likelihood test from
Algorithm 1 is minimized. We look only among the sum lengths from the first 20 acceptances of
the test. For comparison, we also implement classical methods as a function of the number of order
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statistics k as follows: we compute the peaks over threshold method for threshold levels th(k) = X(k)

such that X(1) ≥ X(2) ≥ · · · ≥ X(n), and we compute the block maxima method for blocks of length
blBM (k) := n/k.

4.4.2 Analysis of the radial component

At each region, we start by studying the supremum norm observations, i.e. (|Xt|)t=1,...,n. We
apply all three methods to estimate confidence intervals for the 50 years return level of Fall ob-
servations of the supremum norm. The obtained estimates are presented in Figure 4.5 where the
rows correspond to different regions and the columns correspond to different methods. We notice
that, as suggested by the simulation study in Section 4.3, the confidence intervals obtained with
the peaks over threshold method might be too narrow and underestimate the expected return level.
We also remark that the block maxima method varies strongly for different block length choices
in Figure 4.5, thus a careful choice is required. Finally, we conclude that the stable sums method,
illustrated in the third column of Figure 4.5, gives robust estimates as a function of k.
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Figure 4.5: Estimates of the 50 years return level of fall supremum norm observations with confidence
intervals. We write estimates as a function of k with the parametrization detailed in Section 4.4.1.

Moreover, we look at qqplots of the observed records (Si,bl(α̂
n(k))1/α̂n(k))i=1,...,bn/blc against the

theoretical stable quantiles to the power 1/α̂n(k), for k = 150, 250, 350, 450, with sum lengths chosen
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as detailed in Section 4.4.1. Figures 4.6, 4.7, 4.8 contain the qqplots for the northwest, south and
northeast, respectively, and allow us to assess goodness of fit for the different choices of k. We
conclude from Figure 4.6 that for the northwest locations, the choice k = 350, bl = 165 captures
nicely the intermediate and extreme quantiles. For the southern region, we see in Figure 4.7 that
the choice k = 250 and bl = 105 gives an accurate fit. Lastly, for the northeast region, Figure 4.8
suggests the choices k = 350 and bl = 70, or k = 450 and bl = 53, for a correct alignment of
intermediate and high quantiles.
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Figure 4.6: qqplots for different k values of the 1/α̂n(k)–stable quantiles against the 1/α̂n(k)–
(St,b(α̂

n(k)))t=1,...,bn/bc records with 95% confidence intervals for the northwest.

4.4.3 Analysis of the multivariate components

Finally, we turn back to the component-wise analysis. In this case, we must estimate the in-
dexes of spatial clustering. Relying on (4.2.8) we obtain estimates: m̂n = (0.4966, 0.2709, 0.5744)

corresponding to the weather stations at Brest, Lanveoc and Quimper in the northwest region; m̂n =

(0.6064, 0.4706, 0.2866) for Bormes, Le Luc and Hyeres in the south; and m̂n = (0.3910, 0.4448, 0.5649)

for Nancy, Metz, Roville in the northwest.
Roughly speaking, we interpret (4.1.3) to say: high daily rainfall levels at each weather station

can be modelled as high quantiles of a stable distribution. In particular, letting the largest order
statistics from each station play the role of the sequence of high threshold levels in (4.1.3), we deduce
an empirical version of this relation which can be rewritten as

P((Sbn(α̂n))1/α̂n ≤ X(k)(j)) ≈ 1− k

m̂n(j)n/bn
, (4.4.17)
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Figure 4.7: qqplots for different k values as in Figure 4.6 but for the southern region.
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Figure 4.8: qqplots for different k values as as in Figure 4.6 but for the northeast region.

where X(1)(j) ≥ X(2)(j) ≥ · · · ≥ X(bn/bnc)(j), for j = 1, . . . , d. However, the approximation
in (4.4.17) is only justified for the largest observations recorded. Moreover, the left-hand side in
(4.4.17) can be approximated from the stable distribution fitted in line 5 of Algorithm 1.

In this way, we inspect the Equation (4.4.17) by plotting the sample largest order statistics
(X(t)(j))t=1,...,bm̂n(j)n/bnc, against the 1/α̂n–stable quantiles from the distribution fitted in line 5
of Algorithm 1 for the multivariate stable sums method. For comparison with the univariate ap-
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proach, we also plot the largest order statistics against the 1/α̂n–stable quantiles from the univariate
implementation as the following relation is also justified from (4.1.3)

P((
∑bn

t=1(Xt(j))
α̂n(k))1/α̂n ≤ X(k)(j)) ≈ 1− k

n/bn
. (4.4.18)

The plots are displayed in Figure 4.9 with points in black and grey for the multivariate and uni-
variate approach, respectively. We use the estimates m̂n, presented at the beginning of this section,
and the tuning parameters α̂n, bl from Section 4.4.2, pointing to a nice fit of the radial component.
In particular, we set k = 350, bl = 165 for the northwest region, k = 250, bl = 105 for the south
and k = 350, bl = 70 for the northeast. We interpret the largest records close to the diagonal as a
nice fit. We remark from Figure 4.9 that overall the plots from the multivariate approach in black
describe more accurately the most extreme observations compared to the univariate approach in
gray. In particular, we can see a big improvement in the northeast region. For this region we also
use the visual tool of Figure 4.9 to discard the choice of parameters k = 450 and bl = 53 as we
found the fit from Figure 4.9 to be more accurate.
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Figure 4.9: Plot of observations vs. 1/α̂n stable quantiles for the multivariate (in black) and
component-wise estimators (in grey) with confidence intervals. The dotted line is the identity map
x 7→ x.
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The intermediate quantiles shouldn’t necessarily align, and in practice, there is not a clear
procedure for knowing how many of the top quantiles should line up with the diagonal. Furthermore,
we notice the observations are limited when the estimates of the spatial index: m(j), are close to
zero and then the graphical analysis is less reliable than for values of it close to one; see e.g. the
stations of Lanveoc and Hyeres. We conclude that the multivariate method captures accurately the
highest rainfall records, and supported by the numerical results from Section 4.3.6, it is justified
for addressing the spatial dependencies of extremes. Using the choice of parameters k, bl, tuned
for each region, and the estimates m̂n, we can calculate confidence intervals for the 50-years return
levels using Algorithm 1.

4.5 Conclusions

Atmospheric conditions drive the heavy-rainfall measurements. These records have a spatial
and temporal coverage explained by the storm/fonts dynamics. Typically, an extreme event with
a common source is recorded simultaneously at different locations and over different time lags.
In this work, we have proposed the stable sums method to aggregate space and time information
of dependent observations. Our ultimate goal was to extrapolate high quantiles at each weather
station.

Our stable sums approach could also be used to address other environmental extremal problems.
We now comment on one of them based on the idea that the asymptotics of space and time mul-
tivariate extreme events can be summarized by the univariate random variable of partial sums. In
this work, we allocated weights m(j) to each coordinate to compute the marginal features like the
set {X(j) > x}. Conceptually, it should be also possible to study other d-dimensional extremal sets,
for example, {X(j) > x,X(j′) > x}. Applying the theoretical results of [26] will introduce weights
of the type m(j, j′). Still, our take-home message will remain the same: important d−dimensional
features are accessible by fitting only the univariate sums.

4.6 Asymptotic theory

4.6.1 Invariance principle

We work under the anti-clustering condition below tailored to avoid long-range dependence of
extremes. Similar conditions are also needed to justify the declustering procedures [65].

Anti-clustering condition: There exists a sequence (xn) such that for all ε > 0,

lim
k→+∞

lim sup
n→+∞

P
(

max
t=k,...,n

|Xt| > εxn
∣∣ |X0| > εxn

)
= 0, (4.6.19)

and nP(|X0| > xn)→ 0 as n→ +∞.
To study the long-term extremal dependencies we review below Proposition 3.2 in [26].
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Lemma 4.6.1. Let (Xt)t∈Z be a regularly varying time series in (Rd, | · |) with index of regular
variation α > 0, and spectral tail process (Θt)t∈Z; see 4.2.7. Under (4.6.19), ‖Θt‖αα < +∞ a.s. and
Qt = Θt/‖Θt‖α, for t ∈ Z, is well defined. We call (Qt)t∈Z the cluster process.

To study the symptotics of partial sums of p-powers, we require also an assumption to control
the moderate values of sums. Similar conditions where considered in [5, 40, 121, 26].

Vanishing small values condition: There exists a sequence (xn) verifying (4.6.19), n/xα−κn → 0, as
n→∞ for some κ > 0, and for all δ > 0

lim
ε↓0

lim sup
n→+∞

P
(∑n

t=1 |Xt|α11{|Xt|≤ε xn} > δ xαn
)

nP(|X0| > xn)
= 0. (4.6.20)

Notice that since n/xα−κn → 0 for some κ > 0 in (4.6.20), then nE[|X0/xn|α11{|X0|≤xn}] → 0,

which implies Sn(α)/xαn
P−→ 0 as n→ +∞. Hence,

P
(∑n

t=1 |Xt|α11{|Xt|≤ε xn} > δ xαn
)

nP(|X0| > xn)
≤ δ−1 Var

(∑n
t=1 |Xt/xn|α11{|Xt|≤ε xn}

)
nP(|X0| > xn)

≤ δ−1 E
[
|X/xn|2α11{|X0|≤ε xn}

]
P(|X0| > xn)

(
1 +

∑n
t=1ρt

)
,

where ρt ∈ [0, 1] is a correlation coefficient defined as ρt := corr
(
|X0|α−κ, |Xt|α−κ

)
, for some κ > 0.

If
∑∞

t=1 ρt < +∞, then an application of Karamata’s theorem yields an asymptotic upper bound
given by δ−1 εα(1 +

∑+∞
t=1 ρt) and (4.6.20) holds by letting ε ↓ 0.

We review Lemma 4.1 [26] showing c(α) = 1 in (4.1.3). The proof is postponed to Section 4.7.1.

Lemma 4.6.2. Let (Xt)t∈Z be an Rd–valued regularly varying time series with index of regular
variation α > 0. Assume it verifies conditions (4.6.19) and (4.6.20) for a sequence (xn). Then

lim
n→+∞

P
(
Sn(α) > xαn

)
nP(|X0| > xn)

= 1, n→ +∞. (4.6.21)

In this way, the choice p = α in (4.1.3) is a declustering method due to the invariance property
in (4.6.21). Indeed, the unit limit holds regardless of the underlying time dependence dynamic of
extremes for numerous examples verifying (4.6.19) and (4.6.20) [10, 24, 121].

4.6.2 Central limit theorem

We state the limit theory of partial sums of α-powers of regularly varying increments, for α the
tail index. For p/α ∈ (0, 1) ∪ (1, 2) we refer to Proposition 5.4. in [26]. We require the time series
of α-powers to satisfy the mixing condition below close to condition (2.8) in [5].

Mixing condition: Let (Zt)t∈Z be an Rd–valued regularly varying time series with index of regular
variation equal to one. Assume for all ε > 0, u ∈ Rd, there exists integer sequences k = kn → ∞,
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(an), satisfying n/kn →∞, nP(|Z0| > an)→ 1 and

∣∣E[ exp
{
iu>

∑n
t=1Zt/an

}]
− E

[
exp

{
iu>

∑k
t=1Zt/an

}]bn/kc∣∣→ 0 , n→ +∞. (4.6.22)

The mixing condition in (4.6.22) holds if the decay of the α-mixing coefficients happens suffi-
ciently fast; cf. Lemma 3.8. in [5] where (αt) is defined, for all h ∈ N, as

αh := sup
A∈σ( (Xt)t≤0 ),B∈σ( (Xt)t≥h )

|P(A ∩B)− P(A)P(B)|.

Proposition 4.6.3. Consider (Xt) to be an Rd–valued regularly varying time series with index of
regular variation α > 0. Let (an(α)), (dn(α)), be sequences such that nP(|X0|α > an(α)) → 1

and dn(α) := E[|Xt|α11(|Xt|α ≤ an(α))]. If (|Xt|α)t∈Z verifies conditions (4.6.22), (4.6.19), (4.6.20)
simultaneously; see Remark 4.6.4, then

(Sn(α)− dn(α))/an(α)
d−→ ξ1, n→ +∞

where ξ1 is stable distributed with a = 1 and β = 1 following the notation in (4.2.6).

Proposition 4.6.3 and Lemma 4.6.2 justify Algorithm 1 built on the partial sums of α−powers.
Conditions (4.6.22), (4.6.19), have been verified on numerous examples under weakly mixing

assumptions; cf. [5, 121] and references therein.

Remark 4.6.4. Conditions (4.6.22), (4.6.19) and (4.6.20) hold simultaneously if there exists an
integer sequence (kn) such that (xn), defined by xkn = an(α), satisfies (4.6.19) and (4.6.20), (kn)

satisfies (4.6.22), and nP(|X0|α > an(α)) → 1 as n → ∞. Conditions (4.6.19) and (4.6.20) are
tailored to study the extreme behavior of (|Xt|α)t=1,...,n as (xn) satisfies P(

∑n
t=1 |X0|α > xn) ∼

nP(|X0|α > xn)→ 0, and

kn P(|X0|α > xkn) = kn (nP(|Xt|α > an(α)))/n ∼ kn/n → 0, n→ +∞.

4.7 Proofs

4.7.1 Proof of Lemma 4.6.2

We rely on telescopic sum arguments from [97, 98]; see [5]. For all ε > 0, δ > 0,

I := P(Sn(α) > xαn) =P
(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} < δ xαn

)
+ P

(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} > δ xαn

)
.

Referring to condition (4.6.20), the probability term above satisfies

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > xαn
)
≤ I ≤ P

(∑n
t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn

)
+ o(nP(|X0| > xn)).
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Hence, to show (4.6.21) it suffices to prove that for all δ > 0 the following relation holds

lim
δ→0

lim
ε→0

lim
n→+∞

P
(∑n

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

nP(|X0| > xn)
= 1. (4.7.23)

Using the so-called telescopic sum argument, and by condition (4.6.19), for all K > 0,

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

=
∑n−1

j=1

{
P
(∑j+1

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− P
(∑j+1

t=2 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ P(|X1|α > (1− δ)xαn)

=
∑n−1

j=K

{
P
(∑K

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− P
(∑K

t=2|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ P(|X1|α > (1− δ)xαn) + o(nP(|X0| > xn)).

Then, writing (Θt)t∈Z as in (4.2.7), we obtain

II := lim
n→+∞

P
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

nP(|X0| > xn)

= lim
ε↓0

lim
K→+∞

{
ε−α
∫∞

1 P
(∑K

t=0|εyΘt|α11{y|Θt|>1} > (1− δ)
)

− P
(∑K

t=1|εyΘt|α11{y|Θt|>1} > (1− δ)
)
d(−y−α)

}
.

Indeed, the points of discontinuity at the limit are contained in ∪Kt=1{Y |Θt| = 1}, which has zero
probability. Then, using monotone convergence we take the limit as K → +∞ within the integral.
Furthermore, the change of coordinates u = ε y entails

II = lim
ε↓0

{∫∞
ε P

(∑∞
t=0|yΘt|α11{y|Θt|>ε} > (1− δ)

)
− P

(∑∞
t=1|yΘt|α11{y|Θt|>ε} > (1− δ)

)
d(−y−α)

}
.

We conclude by monotone convergence that we can take the limit as ε goes to zero at each term.
As a result we obtain asymptotic equivalence with the term below

∼
∫∞

0 P
(∑∞

t=0|yΘt|α > (1− δ)
)
− P

(∑∞
t=1|yΘt|α > (1− δ)

)
d(−y−α)

= (1− δ)−1E
[∑∞

t=0|Θt|α −
∑∞

t=1|Θt|α
]

= (1− δ)−1.

In the last step we use that |Θ0| = 1. Finally, we conclude taking the limit as δ goes to zero that
the relation 4.7.23 holds and this concludes the proof.
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4.7.2 Proof of Proposition 4.6.3

To proof Proposition 4.6.3, we state in Theorem 4.7.1 a central limit theory for regularly varying
increments of unitary index or regular variation. Our proof in Section 4.7.2 removes the assumption
(4.10) in [9] and (CT) in Theorem 3.1. [5], treating the recentering term.

Theorem 4.7.1. Let (Zt)t∈Z be an Rd–valued regularly varying time series with index of regular
variation equal to one. Let (an), (dn) be sequences verifying nP(|Z0| > an) ∼ 1 as n → +∞
and dn := E[|Zt|11(|Zt| ≤ an)] and assume (4.6.22), (4.6.19), (4.6.20) hold simultaneously (as in
Remark 4.6.4). Then,

∑n
t=1(Zt − dn)/an converges in distribution to a stable distribution ξ1 with

unit stable parameter, and for all u ∈ Rd,

logE
[

exp
{
iu>ξ1

}]
=
∫∞

0 E
[

exp
{
iu>

∑
t∈ZyQ

Z
t

}
− 1− i sin

(
u>
∑

t∈ZyQ
Z
t

)]
d(−y−1) + iµ(u) , (4.7.24)

where the last term in (4.7.24) is a location parameter given by

µ(u) :=
∫∞

1 E
[

sin
(
u>
∑

t∈ZyQ
Z
t

)
− sin

(
u>
∑

t∈ZyQ
Z
t − u>

∑
t∈ZyQ

Z
t 1

)]
d(−y−1),

and (QZ
t )t∈Z refers to the cluster process of (Zt)t∈Z as defined in Lemma 4.6.1 verifying ‖QZ

t ‖1 = 1

a.s.

Proposition 4.6.3 below follows straightforwardly from Theorem 4.7.1.

Proof of Proposition 4.6.3. Let (Qt)t∈Z be the cluster process of (Xt)t∈Z such that ‖Qt‖α = 1 a.s.
Define the time series (Zt)t∈Z, Zt = |Xt|α, with spectral process (QZ

t )t∈Z a.s. equal to QZ
t = |Qt|α,

for all t ∈ Z, such that
∑

t=1 Q
Z
t = 1 a.s. Theorem 4.7.1 entails

∑n
t=1(|Xt|α− dn(α))/an(α) admits

a stable limit ξ1 with log-characteristic function: u ∈ R

logE[exp{i u ξ1}] =
∫∞

0 E
[

exp
{
i uy

}
− 1− i sin(uy)

]
d(−y−1) + iµ(u) ,

Then, following the lines of the argument in section XVII.2 of Feller [67], we deduce the skweness
parameter of the stable limit ξ1 verifies β = 1.

Proof of Theorem 4.7.1

Proof. Let (Zt)t∈Z be an Rd–valued regularly varying time series with index equal to one. We
introduce the truncation notation where, for ε > 0, we denote Sn :=

∑n
t=1 Zt and

Sn/anε :=
∑n

t=1Zt/an11{|Zt|>εan}, Sn/an
ε

:=
∑n

t=1Zt/an11{|Zt|≤ε an}.

We also consider a truncation of the centering sequence (dn)n∈N defined by

dn/anε = E[|Z0/an|11{ε an<|Z0|≤an}], n ∈ N.
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To simplify we denote the cluster process (QZ
t )t∈Z := (Qt).

From the mixing condition in (4.6.22) we deduce there exists a sequence k := kn → +∞ such
that, for all u ∈ Rd,

E
[

exp
{
iu> (Sn/an − ndn/an)

}]
∼ E

[
exp

{
iu> (Sk/an − k dn/an)

}]bn/kc
.

as n→ +∞. Then, taking the logarithm at both sides yields

logE
[

exp
{
iu> (Sn/an − ndn/an)

}]
∼ n

k
logE

[
exp

{
iu> (Sk/an − k dn/an)

}]
∼

E
[

exp
{
iu> (Sk/an − k dn/an)

}]
− 1

k P(|Z0| > an)

∼
E
[

exp
{
iu> (Sk/anε − k dn/anε)

}]
− 1

k P(|Z0| > an)
.

such that the second step is granted since k dn/an → 0 as n→ +∞ and also Sk/an
P−→ 0 as n→ +∞

and the last step follows by the vanishing-small-values condition in (4.6.20) and boundedness of the
exponential function. Then, it follows from a Taylor expansion that

∣∣(E[ exp
{
iu> (Sk/anε − k dn/anε)

}]
− 1
)

−
(
E
[

exp
{
iu> Sk/anε

}]
− 1− iE[sin(u> Sk/anε

1
)]
)∣∣∣

= O
(
k dn/anεE[|Sk/anε|11(|Sk/anε| ≤ 1)]

)
.

Moreover, |k dn/anεE[|Sk/anε|11(|Sk/anε| ≤ 1)]|/k P(|Z0| > an) → 0 as n → +∞. Thus, we
obtain the asymptotic equivalence

logE
[

exp
{
iu> (Sn(α)/anε − ndn/anε)

}]
∼

E
[

exp
{
iu> Sk/anε

}
− 1− i sin(uSk/anε

1
)
]

k P(|Z0| > an)
.

as n→ +∞. Furthermore,

E
[

exp
{
iu> Sk/anε

}
− 1− i sin(u> Sk/anε

1
)
]

= E
[(

exp
{
iu> Sk/anε

}
− 1)

)
11{|Sk|>εan}

]
− E

[
i sin(u> Sk/anε

1
)11{|Sk|>εan}

]
.

For all x ∈ Rd, we denote x11|x|>ε by xε, and similarly we denote x11|x|≤1 by x1. Then, conditioning
to the event {|Sk| > εan}, we use the limit relation in (4.6.21) and Proposition 4.2. in [26] and take
the limit as n goes to infinity in the above expression. Hence,

E
[

exp
{
iu>Sk/anε

}
− 1− i sin(u> Sk/anε

1
)
]

kP(|Z0| > an)

∼
∫∞

0 E
[

exp
{
iu>

∑
t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈Z(yQtε

1)]
d(−y−1),
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where (Qt)t∈Z is the cluster process of the stationary process (Zt). In particular, it takes values in
RZ and verifies

∑
t∈Z |Qt| = 1 with probability one.

Let δ > 0 and let’s divide the integral above on the events {y > δ} and {y ≤ δ}. Over the event
{y ≤ δ} we have that given we choose δ < 1,

∫∞
0 E

[
exp

{
iu>

∑
t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈ZyQtε

1)]
11(y ≤ δ) d(−y−1)

=
∫∞

0 E
[

exp
{
iu>

∑
t∈ZyQtε

}
− 1− i sin

(
u>
∑

t∈ZyQtε

)]
11(y ≤ δ) d(−y−1).

Then, using the inequality | exp{iz}−1− i sin(z)| ≤ |z|2 for all z ∈ R, the integral above is bounded
in absolute value by

∫∞
0 E

[∣∣u>∑t∈Z|yQt|
∣∣2]11(y ≤ δ)d(−y−1) ≤ δE

[∣∣u>∑t∈Z|Qt|
∣∣2] = δ|u|2 < +∞.

Then, we conclude that

logE
[

exp
{
iu> (Sk/an − ndn/an)

}]
∼ lim

δ→0

∫∞
δ E

[
exp

{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt
1)]

d(−y−1).

Moreover, we can rewrite the term above as the sum of two integrals as shown below

lim
δ→0

∫∞
δ E

[
exp

{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt

)]
d(−y−1)

+ i
∫∞

1 E
[

sin
(
u>
∑

t∈ZyQt

)
− sin

(
u>
∑

t∈ZyQt − u>
∑

t∈ZyQt1

)]
d(−y−1)

= I + II

such that the for the last term we can use the trigonometric relation sin(p)−sin(p−q) = 2 sin(p/2) cos(p−
(q/2)), for p, q ∈ R, to obtain that the second term II is bounded in absolute value by

∫ +∞
1 y−2 = 1.

This term can be interpreted as a location parameter.
Finally, by monotone convergence, using the bound previously derived, we can take the limit as

δ goes to 0 in I yielding

logE
[

exp
{
iu> (Sk/an − ndn/an)

}]
∼
∫∞

0 E
[

exp
{
iu>

∑
t∈ZyQt

}
− 1− i sin

(
u>
∑

t∈ZyQt

)]
d(−y−1)

+ i
∫∞

1 E
[

sin
(
u>
∑

t∈ZyQt

)
− sin

(
u>
∑

t∈ZyQt − u>
∑

t∈ZyQt1

)]
d(−y−1).

as n→ +∞. We have shown that the limit relation from equation (4.7.24) holds and this concludes
the proof.
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Chapter 5: (Ongoing work)
Asymptotic normality of `p–cluster inference

Abstract

In the stationary regularly varying time series framework, extreme be-
havior occurs as short periods with several heavy recordings, known
as extremal blocks. To summarize this clustering of heavy observa-
tions, we let functionals act on extremal blocks. Summary statistics of
this type are known as cluster statistics. For example, we can recover
the extremal index in this way. To address cluster statistics inference,
we review the blocks estimators in [26]. These are built on large de-
viation principles of extremal `p-blocks, i.e., consecutive observations
with large `p-norms, for p > 0. We show asymptotic normality of
these blocks estimators relying on the theory in [52]. The goal of this
work is twofold. First, we aim to review the arguments of empirical
process theory. Second, we aim to study mixing conditions to guaran-
tee asymptotic normality of the `p-blocks estimators in the stationary
setting. We conclude by verifying the main assumptions on classic
models as linear models and stochastic recurrence equations.

keywords: Cluster processes; multivariate regular variation; stable dis-
tribution; stationary time series; extremal index; empirical processes
theory.
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Main contributions

I address (Quest. 3) in this Chapter. The following are my main contributions:

- (Quest. 3): Consider the p-clusters Q(p) ∈ `p, satisfying ‖Q(p)‖p = 1, a.s., introduced

in Theorem 2.2.1. Let’s denote f̂Qp the disjoint blocks estimators from Theorem 2.4.1,
tailored to infer the cluster statistic

fQp = E[f(YQ(p))], (5.0.1)

such that f : `p → R is a bounded continuous function, and Y is Pareto distributed,
P(Y > y) = y−α, for y > 1, independent of Q(p). Theorem 5.2.1 states that if

u 7→ f(xt/u), (xt) ∈ `p, u > 0,

is a non-increasing function, then

√
k(f̂Qp − fQp )

d−→ N
(
0,Var(f(YQ(p)))

)
, n→ +∞. (5.0.2)

holds under suitable mixing conditions.

Section 5.6 studies the main assumptions of Theorem 5.2.1 on classical models such as
linear filters and stochastic recurrence equations.
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5.1 Introduction

We consider stationary heavy-tailed time series with finite-dimensional distributions being mul-
tivariate regularly varying; see [10]. It is typical in this framework for extremal observations of
the time series to cluster. Roughly speaking, this means a heavy record will trigger a short period
with numerous extremal gauges. This behavior is known to perturb classical inference procedures
tailored for independent observations [59]. A typical statistic summarizing the clustering effect is
the extremal index. It was introduced initially in [109] and [110], and further popularized in the
field of extremes as it corrects inferential procedures of extremes applied to dependent data [59].
We can interpret it as the reciprocate of the mean number of high levels triggered by one first heavy
record in a short period [25]. In this article, we focus on cluster statistics inference, i.e., we aim to
recover summary statistics of the clustering effect by letting functionals act on consecutive obser-
vations with heavy behavior. For example, we can recover the extremal index from this setting and
also other important indexes in extremes. The main goal of this article is to study the asymptotic
properties of the so-called blocks estimators tailored for cluster inference.

We examine cluster inference for regularly varying time series based on disjoint blocks with
the framework from [26]. We review their setting and state sufficient conditions for asymptotic
normality of the cluster-based blocks estimators to hold. The novelty of the approach in [26] is
twofold. First, they propose to infer cluster statistics using extremal `p-blocks for p > 0, i.e.,
consecutive observations with large `p-norm. So far, cluster inference was typically addressed using
blocks with at least one exceedance of a large threshold [52, 51, 28, 108]. The strategy of considering
blocks exceeding a threshold for the `p-norm, for p < ∞, proved to be advantageous compared to
p = ∞ regarding bias. Intuitively, as p decreases, the `p-norms increase yielding to more effective
clusters crossing the high threshold for the `p-norm. Second, [26] also introduce order statistics of
the `p-norms sample, and propose to replace high thresholds with order statistics of the `p-norms
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sample.
We prove asymptotic normality of cluster-based blocks extimators relying on the asymptotics of

disjoint blocks estimators studied in Theorem 2.10. in [52], and the theory of empirical processes
therein. We also follow the modern overview in [108]. In our case, to handle the asymptotics
of extremal `p-blocks we rely on the large deviation principles studied in [26] and appeal to the
so called p-cluster processes theory. We state asymptotic normality of the cluster-based blocks
extimators in Section 5.2, with random threshold chosen as `p-norm order statistics. Preliminaries
on mixing coefficients, regular variation, and p-cluster processes theory are compiled in Section 5.3.
In Section 5.4, we state mixing conditions for consistency and for finite-dimensional asymptotic
normality of the cluster-based blocks estimators with deterministic thresholds. Recall this last
is a necessary condition to show functional central limit theorems, which we then use to replace
the deterministic threshold with random `p-norm order statistics thresholds. Section 5.5 studies
examples of cluster index estimation such as the extremal index and the cluster index for sums.
We conclude with verification of the assumptions on classical models such as linear processes and
stochastic recurrence equations in Section 5.6.

5.1.1 Notation

We consider stationary time series (Xt) taking values in Rd, that we endow with a norm | · |.
Let p > 0, and (xt) ∈ (Rd)Z. Define the p-modulus function ‖ · ‖p : (Rd)Z → [0,+∞] as

‖(xt)‖pp :=
∑

t∈Z|xt|
p ,

and define the sequential space `p as

`p := {(xt) ∈ (Rd)Z : ‖(xt)‖pp < +∞} ,

with the convention that, for p =∞, the space `∞ refers to sequences with finite supremum norm.
For any p ∈ (0,+∞], the p-modulus functions induce a distance dp in `p, and for p ∈ [1,+∞),
it defines a norm. Abusing notation, we call them p-norms for p ∈ (0,+∞]. Let ˜̀p = `p/ ∼ be
the shift-invariant quotient space where: (xt) ∼ (yt) if and only if there exists k ∈ Z such that
xt−k = yt, t ∈ Z. We also consider the metric space (˜̀p, d̃p) such that for [x], [y] ∈ ˜̀p,

d̃p([x], [y]) = inf
k∈Z
{dp(xt−k,yt), (xt) ∈ [x], (yt) ∈ [x]},

and without loss of generality, we write an element [x] in ˜̀p also as (xt). Further details on the
shift-invariant spaces are deferred to [26, 9].

Furthermore, for a, b,∈ Z, and a ≤ b, we write as x[a,b] the vector (xt)t=a,··· ,b taking values in
(Rd)b−a+1. We sometimes write x[a,b] ∈ ˜̀p, which means we take the natural embedding of x[a,b] in
˜̀p defined by assigning zeros to undefined coefficients.

For a stationary time series (Xt), we write (ρh), (βh), for the sequence of ρ- and β-mixing
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coefficients with respect to past and future σ−algebras defined by Ft≤0 := σ((Xt)t≤0) and Ft≥h :=

σ((Xt)t≥h), respectively. A formal definition of mixing coefficients, and their main properties are
reviewed in Section 5.3.

The operator norm for matrices A ∈ Rd×d is defined as |A|op := sup|x|=1 |Ax|. The truncation
operations of (xt) at the level ε, for ε > 0, are defined by

(xεt ) = (xt11|xt|≤ε) , (xtε) = (xt11|xt|>ε) ,

We sometimes write x for the sequence x := (xt) ∈ (Rd)Z.

5.2 Main Result

5.2.1 Disjoint cluster blocks estimators

Consider (Xt) to be a stationary time series taking values in (Rd, | · |). We assume it is regularly
varying with tail index α > 0, i.e., all its finite-cut distributions are multivariate regularly varying;
see Section 5.3.2. For p ∈ (0,+∞], we also assume it admits a p-cluster process Q(p), i.e., for a well
chosen sequence (xn) (see Assumptions Theorem 5.3.4) satisfying

P(‖X[0,n]‖p > xn) ∼ n c(p)P(|X0| > xn)→ 0, n→ +∞, (5.2.3)

for c(p) ∈ (0,∞), then

P(X[0,n]/xn ∈ · | ‖X[0,n]‖p > xn)
w−→ P(YQ(p) ∈ · ), n→ +∞, (5.2.4)

where Y is independent of Q(p) ∈ ˜̀p, P(Y > y) = y−α, for y > 1, ‖Q(p)‖p = 1 a.s., and the limit in
(5.2.4) holds in (˜̀p, d̃p); see Section 5.3.3.

It will be convenient to write G+(˜̀p) for the continuous non-negative functions on (˜̀p, d̃p) which
vanish in a neighborhood of the origin. We aim to infer statistics of bounded functionals f ∈ G+(˜̀p),
acting on YQ(p), of the form

fQp = E[f(YQ(p))] . (5.2.5)

We consider observations X[1,n], and an intermediate sequence of block length (bn), such that
bn → +∞, n/bn → +∞, as n→ +∞. We then divide observations into disjoint blocks (Bj)j=1,...,mn ,
with mn := bn/bnc, such that

X1, . . . ,Xbn︸ ︷︷ ︸
B1

,Xbn+1, . . . ,X2bn︸ ︷︷ ︸
B2

, . . . ,X(mn−1)bn+1, . . . ,Xmn bn︸ ︷︷ ︸
Bmn

.

Following [26], we estimate fQp in (5.2.5) using disjoint blocks estimators, that we denote f̂Qp , defined
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as

f̂Qp :=
1

k

mn∑
t=1

f(Bt/‖Bt‖p,(k))11(‖Bt‖p ≥ ‖Bt‖p,(k)), (5.2.6)

where

‖Bt‖p,(1) ≥ ‖Bt‖p,(2) ≥ · · · ≥ ‖Bt‖p,(mn),

denotes the sequence of order statistics of the `p-norms, and (kn) is a sequence satisfying k = kn →
+∞,

k =
⌊
mnP(‖B1‖p > xbn)

⌋
∼ n c(p)P(|X0| > xb), n→ +∞, (5.2.7)

where c(p) ∈ (0,∞) is as in (5.2.3). Also, we write the deterministic threshold estimator f̃Qp :=

f̃Qp (1) by

f̃Qp (u) :=
1

k

mn∑
t=1

f(Bt/u xbn)11(‖Bt‖p > uxbn) , u > 0. (5.2.8)

5.2.2 Main result

Asymptotic normality of the estimators in (5.2.6) is established in Theorem 5.2.1 below. We
defer to proof to Section 5.7.1.

Theorem 5.2.1. Let (Xt) be an Rd-valued regularly varying time series with tail index α > 0

admitting a p-cluster process Q(p). Let (xn), (bn), be well chosen sequences such that (5.2.4) holds
and n/bn → +∞, as n → +∞. We fix a bounded function f ∈ G+(˜̀p) and assume u 7→ f((xt)/u)

is non-increasing for all (xt) ∈ ˜̀p, u > 0. Assume also (1), (2), (3), below hold. Then,

√
k
(
f̂Qp − fQp

) d−→ N (0,Var(f(YQ(p))) ) , n→ +∞. (5.2.9)

where Y is independent of Q(p) and P(Y > y) = y−α, for y > 1.

(1) Assume the mixing condition:

mnβbn → 0, n→ +∞. (5.2.10)

(2) Assume also for ε > 0, the bias conditions (5.2.11), (5.2.12), below hold

0 = lim
n→+∞

√
k sup
u∈[1−ε,1+ε]

∣∣ E[f(B1/u xbn)11(‖B1/xbn‖p > u)]

P(‖B1‖p > xbn)
− u−α fQp

∣∣ , (5.2.11)

0 = lim
n→+∞

√
k sup
u∈[1−ε,1+ε]

∣∣ P(‖B1/xbn‖p > u)

P(‖B1‖p > xbn)
− u−α

∣∣ . (5.2.12)
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(3) Let F ⊆ G+(˜̀p) be the set with two functions: (xt) 7→ f(xt) and (xt) 7→ 1. Consider the
family of deterministic threshold estimators defined by

T = {g̃Qp (u)}{g(·/u): u∈[1−ε,1+ε],g∈F}. (5.2.13)

Assume asymptotic normality of the finite-dimensional parts of T holds (see Proposition 5.4.4),
i.e.,

√
k
(
g̃Qp (u)− u−α gQp

) fi.di.−−−→ G(g(·/u)), g̃Qp (u) ∈ T , (5.2.14)

as n→ +∞, such that G is a centered Gaussian process satisfying

Cov
(
G(g(·/u)),G(h(·/v))

)
=

∫ ∞
u∨v

E[g(yQ(p)/u)h(yQ(p)/v)]d(−y−α), (5.2.15)

for u, v ∈ [1− ε, 1 + ε], and g, h ∈ F .

In particular, if (1), (2), (3), hold, then uniform asymptotic normality of the family T holds.

Asymptotic normality of finite-dimensional parts of T as in (5.2.14) is analyzed in depth in
Section 5.4 under further mixing assumptions. We highlight from Theorem 5.2.1 the simple writing
of the covariance structure thanks to the theory of p-cluster processes in [26]. We give a couple of
remarks below.

Remark 5.2.2. In Theorem 5.2.1 we assume f ∈ G+(˜̀p) satisfies that u 7→ f((xt)/u) is a non-
increasing function, for all (xt) ∈ ˜̀p. In this case, (f(· /u))u∈[1−ε,1+ε] is a linearly ordered family
and thus it is a VC-class; see Remark 2.11 in [52]. This monotonicity condition is always verified
by the indicator functions u 7→ 11(‖xt‖p > u), for p > 0. It is also the case for functions projecting
into the ˜̀p sphere as the cluster indexes studied in [26] (see Examples 5.5.1, 5.5.2).

Remark 5.2.3. In Theorem 5.2.1 we assume the mixing condition mnβbn → 0, as n → +∞, to
show equicontinuity of the family T in (5.2.13). However, to show (5.2.14) holds with limit Gaussian
process G and covariance (5.2.15), we require further mixing conditions. This discussion is deferred
to Section 5.4.

Remark 5.2.4. The bias assumptions stated in (2) in Theorem 5.2.1 tells us we could neglect the
bias by choosing the block lengths bn sufficiently large. Indeed, recall from (5.2.7), k ∼ n c(p)P(|X0| >
xb), as n → +∞, thus we see from (5.2.11), (5.2.12), that the bias term can be controlled using
sufficiently large block lengths bn for inference.

Remark 5.2.5. We can consider unbounded functionals f ∈ G+(˜̀p) in Theorem 5.2.1 by imposing
a Lindeberg assumption as (C.4.3) in [108], and assuming Var(G(f(·/1))) < +∞, following the
notation from Equation (5.2.15). Recall the relationship between p-clusters established in Proposition
3.1. in [26]; see (5.3.22). We argue that for inferring fQp we can first look for suitable choices of
pairs f ′, p′ such that f ′ is bounded and the limit f ′p′

Q coincides with fQp .
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5.3 Preliminaries

5.3.1 Mixing coefficients

Properties of stationary sequences are usually studied through mixing coefficients that we review
below. For a summary on mixing conditions see [14, 47, 144].

Definition 5.3.1. Let (Xt) be an Rd-valued strictly stationary time series defined over a probability
space ((Rd)Z,A,P). Denote the past and future σ−algebras by Ft≤0 := σ((Xt)t≤0) and Ft≥h :=

σ((Xt)t≥h), respectively. We recall the definition of mixing coefficients (ρh), (βh), below

ρh := sup
f∈L2(Ft≤0 ), g∈L2(Ft≥h )

|Corr(f, g)|,

βh :=
1

2
sup
A,B

∑
i∈I

∑
j∈J
|P(Ai ∩ Bj)− P(Ai)P(Bj)|,

= dTV
(
PFt≤0⊗Ft≥h , PFt≤0

⊗ PFt≥h
)
,

where A = {Ai, i ∈ I},B = {Bj : j ∈ J} are finite partitions of the space, measurable with respect to
Ft≤0 and Ft≥h, respectively, and dTV is the total variation distance of probability measures. Also,
for any two probability spaces ((Rd)Z,A,P1), ((Rd)Z,A,P2), we write P1⊗P2(A×B) = P1(A)P2(B),

for A,B ∈ A.

For the detailed interpretation of the coefficients (βh) in terms of the total variation distance we
refer to Chapter 1.2 in [47].

Remark 5.3.2. The β-mixing coefficients (βt)t≥0 are well adapted while working with Markov pro-
cesses. Indeed, a strictly stationary Markov Chain (Xt), which is Harris recurrent verifies βh → 0

as h → +∞; see Theorem 3.5 in [14]. Further assumptions as Doeblin’s conditions also guarantee
βh → 0 as h→ +∞ at least exponentially fast; see Theorem 3.7. in [14] and references herein.

Remark 5.3.3. The ρ-mixing coefficients (ρt)t≥0 were introduced in [107] and popularized due to
the Ibragimov central limit theorem for dependent stationary sequences in [95]. Mainly, it states
that the mixing condition:

∑∞
t=1 ρ2t < +∞, together with a moment assumption of order 2 + δ,

are sufficient conditions for the central limit of stationary sequences to hold. The aforementioned
mixing condition was studied in detail in [15, 136, 156, 169], as it is shown to be a sharp condition
entailing the central limit theorem; see [14] for a review. However, aside from the Gaussian case
where ρh ≤ πβh, there is not a general recipe for computing ρ–mixing rates.

5.3.2 Regular variation

We consider stationary time series (Xt) taking values in (Rd, | · |). We call it regularly varying
with index α > 0 if all finite dimensional vectors of the time series are regularly varying with index
α > 0. Borrowing the approach in [10], this holds if and only if, for all h ≥ 0, there exists a vector
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(Θt)|t|≤h, taking values in (Rd)2h+1 such that

P(x−1(Xt)|t|≤h ∈ · | |X0| > x)
d−→ P(Y (Θt)|t|≤h ∈ ·), x→ +∞, (5.3.16)

where Y is independent of (Θt)|t|≤h and P(Y > y) = y−α, y > 1. We call the sequence (Θt), taking
values in (Rd)Z, the spectral tail process, and its existence is granted by Kolmogorov’s consistency
theorem.

The time series (Θt) does not inherit the initial stationarity property. Instead, the time-change
formula in [10] holds: for any s, t ∈ Z, s ≤ 0 ≤ t and for any measurable bounded function
f : (Rd)t−s+1 → R,

E[f(Θs−i, . . . ,Θt−i)11(|Θ−i| 6= 0)] = E[|Θi|α f(Θs/|Θi|, . . . ,Θt/|Θi|)]. (5.3.17)

5.3.3 p-cluster processes

let (Xt) be a stationary regularly varying time series with tail index α > 0, taking values in
(Rd, | · |). Recall, for p > 0, we say (Xt) admits a p-cluster process Q(p) ∈ `p if there exists a well
chosen sequence (xn), satisfying

P(‖X[0,n]‖p > xn) ∼ n c(p)P(|X0| > xn)→ 0, n→∞, (5.3.18)

with c(p) ∈ (0,∞) and

P(X[0,n]/xn ∈ · | ‖X[0,n]‖p > xn)
w−→ P(YQ(p) ∈ · ), n→ +∞, (5.3.19)

where Y is independent of Q(p) ∈ ˜̀p, P(Y > y) = y−α, y > 1, ‖Q(p)‖p = 1 a.s., and the limit in
(5.3.19) holds in (˜̀p, d̃p).

The ∞-cluster process was introduced implicetly in [40]; see [9]. The p-cluster processes, for
p < ∞, were introduced in [26]. Anti-clustering and vanishing-small values conditions AC, CSp,
respectively, guarantee the existence of p−clusters. We state below Theorem 2.1. in [26].

Proposition 5.3.4. Let (Xt) be a stationary regularly varying time series with tail index α > 0.
Assume (xn) satisfies n/xp∧(α−κ)

n → 0, for some κ > 0 and for any δ, ε > 0, and

AC : lims→+∞ limn→+∞
∑n

t=s P(|Xt| > εxn | |X0| > εxn) = 0.

CSp: limε↓0 lim supn→+∞
P
(
‖X[1,n]/xn

ε‖pp>δ
)

nP(|X0|>xn) = 0.

For p ≥ α, the function p 7→ c(p) as in (5.3.18) is non-increasing, c(α) = 1, and (Xt) admits a
cluster process Q(p) in the sense of (5.3.19). For p < α, existence of the p-cluster process holds if
there exists c(p) <∞ satisfying (5.3.18).

Under AC, CSα, the time series (Xt) admits an α-cluster Q(α), for α > 0, the (tail) index (see
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Proposition 5.3.4). In this case, appealing to Proposition 3.1. in [26] we have

Q(α) d
= Θ/‖Θ‖α, ∈ ˜̀α. (5.3.20)

where (Θt) is the spectral tail process; see (5.3.16). Furthermore, if we assume in addition that
E[‖Q(α)‖αp ] < +∞, then Equation (5.3.18) holds with c(p) = E[‖Q(α)‖αp ] < +∞. Sufficient condi-
tions on (Xt) such that E[‖Q(α)‖αp ] < +∞ are given in Section 5.7.4.

Moreover, assume (Xt) satisfies the conditions of Proposition 5.3.4, for α, p, p′ > 0, where α > 0

is the (tail) index. Assume also E[‖Q(α)‖αp ] + E[‖Q(α)‖αp′ ] < +∞, then the p, p′-clusters exist and
are related by the change of norms formula below (see Proposition 3.1. in [26])

P(Q(p) ∈ ·)

= c(p)−1E[‖Q(α)‖αp 11(Q(α)/‖Q(α)‖p ∈ ·)] (5.3.21)

=
c(p′)

c(p)
E[‖Q(p′)‖αp 11(Q(p′)/‖Q(p′)‖p ∈ ·)] (5.3.22)

where ‖Q(p)‖p = 1 a.s. for any p > 0 and E[‖Q(p′)‖αp ] = c(p)/c(p′), where c(p), c(p′) are as in
Equation (5.3.18).

Remark 5.3.5. Condition AC is satisfied for m0–dependent sequences for sequences (xn) satisfying
nP(|X0| > xn)→ 0, as n→ +∞.

Remark 5.3.6. Condition CSp is always verified for p > α for sequences (xn) satisfying nP(|X0| >
xn) → 0, as n → +∞ (see Remark 5.1. in [26]). Also, using the monotonicty of norms, we see
straightforwardly that CSp implies condition CSp′, for p, p′ > 0 and p < p′. Let α > 0 be the
(tail) index. Then, for p ≥ α/2, if

∑∞
h=0 ρh < +∞, then condition CSp holds for sequences (xn)

satisfying n/xp∧(α−κ)
n → 0, as n → +∞, for any κ > 0 (see Remark 5.2. in [26]). In particular,

this means that CSp holds for m0–dependent sequences, for p ≥ α/2, for sequences (xn) as before.

5.4 Central limit theory

We complement the discussion on Theorem 5.2.1 in this section. In what follows, we will work
under the assumptions fixed in Section 5.4.1. In Section 5.4.2 we give mixing rates for consistency
of the p-cluster based blocks estimators in (5.2.6). Section 5.4.3 states sufficient assumptions for
asymptotic normality of finite-dimensional parts of the family of deterministic threshold estimators
T defined in (5.2.13); see (5.2.14).

5.4.1 Assumptions

We consider (Xt) to be an Rd-valued stationary regularly varying time series of index α > 0.
We assume (Xt) satisfies AC, CSp, for a sequence (xn), and that it admits a p−cluster process
Q(p) ∈ `p, p > 0 such that (5.3.19) holds for this sequence of thresholds (xn). We fix also the
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sequence of block lengths b = (bn) defining the p-cluster based blocks estimators in (5.2.6). We
write m = mn = bn/bnc and k = (kn) the sequence defined in (5.2.7). We recall the family of
deterministic threshold estimators, that we denote T , defined in (5.2.13).

5.4.2 Consistency of p-cluster based blocks estimators

Recall [26] show consistency of the p-cluster based blocks estimators in (5.2.6) under the mixing
condition that we provide below in Equation (5.4.23). Lemma 5.4.1 gives mixing rates for this
condition to hold. The proof is left for Section 5.7.2.

Lemma 5.4.1. Consider a stationary time series (Xt) satisfying the assumptions in Section 5.4.1.
Let f ∈ G+(˜̀p) be a bounded Lipschitz continuous function. If either 1. or 2. below hold, then the
sequences (xb) and (bn) satisfy the relation

∣∣E[ exp
{
− 1

k

∑m
t=1f(x−1

b Bt)
}
− E

[
exp

{
− 1

k

∑bm/kc
t=1 f(x−1

b Bt)
}]k]∣∣ → 0,

n → +∞, (5.4.23)

where k = kn(b) = bmnP(‖Bt‖p > xb)c is as in (5.2.7).

1. The correlation coefficients (ρt) satisfy

lim
n→+∞

∑blog2(n)c
t=0 ρbn 2t/kn = 0.

2. There exists a sequence (`n), satisfying `n → +∞, as n → +∞, such that the β-mixing
coefficients satisfy

lim
n→+∞

mnβ`n/kn = lim
n→+∞

`n/bn = 0.

Corollary 5.4.2. Consider the assumptions in Lemma 5.4.1, and assume either condition 1. or 2.
therein holds. Then for any bounded function f ∈ G+(˜̀p), the p-cluster based blocks estimator in
(5.2.6) satisfies

f̂Qp
P−→ fQp , n→ +∞.

Proof. This follows from Lemma 5.4.1 and applying Theorem 4.1 in [26].

5.4.3 Covariance p-cluster based blocks estimators

We study now a covariance structure for the deterministic threshold estimators in (5.2.8). We
defer the proof of the next Lemma to Section 5.7.3.

Lemma 5.4.3. Consider a stationary time series (Xt) satisfying the assumptions in Section 5.4.1.
Let g, h ∈ G+(˜̀p) be bounded functions and recall the deterministic threshold estimators in (5.2.8).
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Assume either condition 1. or 2. below holds, then

kCov
(
g̃Qp (u), h̃Qp (v)

)
−→ Cov

(
G(g(·/u)),G(h(·/v))

)
, n→ +∞,

and G is a centered Gaussian process with covariance structure as in (5.2.15).

1. The correlation coefficients (ρt) satisfy
∑mn

t=1 ρtbn → 0, as n→ +∞, and for all t > 0, ε > 0,
the additional anti-clustering assumptions holds as well:

lim
s→+∞

lim
n→+∞

∑tbn
i=(t−1)bn+sP(|Xt| > εxbn | |X0| > εxbn) = 0. (5.4.24)

2. There exists a sequence (`n), satisfying `n → +∞, as n→ +∞, and the β-mixing coefficients
satisfy

lim
n→+∞

mn
kn

∑mn
t=1 β`n+(t−1)bn = lim

n→+∞
`n/bn = 0. (5.4.25)

Proposition 5.4.4. Consider the assumptions in Lemma 5.4.3, and assume either 1. or 2. therein
holds. Consider a bounded function f ∈ G+(˜̀p) satisfying the bias assumptions (5.2.11), (5.2.12),
from Theorem 5.2.1. Recall the family T in (5.2.13), then asymptotic normality of the finite-
dimensional parts of T holds; see (5.2.14), with Gaussian limit G and covariance structure as in
(5.2.15).

Proof. This follows straightforwardly by the Cramér-Wold device since every linear combination of
deterministic threshold estimators in (5.2.8) is again a deterministic threshold estimator.

5.5 Examples of cluster inference

In view of Theorem 5.2.1, we can derive asymptotic normality of classical cluster index statistics
in extreme value theory. In this section we work in the framework of Section 5.4.1.

Example 5.5.1. (Extremal index) Assume the conditions of Proposition 5.3.4 and the conditions
of Theorem 5.2.1 hold for p = α. Consider f to be the function x 7→ ‖x‖α∞/‖x‖αα, let θ|X| =

E[‖Q(α)‖α∞], hence one deduces an estimator

θ̂|X| =
1

k

m∑
t=1

‖Bt‖α∞
‖Bt‖αα

11(‖Bt‖α ≥ ‖Bt‖α,(k)), (5.5.26)

such that

√
k
(
θ̂|X| − θ|X|

) d−→ N (0,Var(‖Q(α)‖α∞)), n→ +∞.
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where θ|X| is the candidate for the extremal index. Recall, in [28] the asymptotic variance for the
blocks estimator of the extremal was computed and equals σ2 such that

σ2 = θ2
|X|
∑
j∈Z

E[|Θj |α ∧ 1]− θ|X|

= θ2
|X|
∑
j∈Z

∑
t∈Z

E[|Q(α)
j+t|

α ∧ |Q(α)
t |α]− θ|X|, (5.5.27)

where the last equality follows appealing to the time-change formula in (5.3.17) and Equation (5.3.20).

Furthermore, we recall the cluster index for sums from Section 4.3 in [26]. Assume the conditions
of Proposition 5.3.4 hold for p = 1 thus (Xt) admits a 1-cluster process Q(1) and 1 ≤ α. Recall
from (2.7.7) that c(1) in (5.3.18) satisfies c(1) = 1/E[‖Q(1)‖αα]; see (5.2.3). We show asymptotic
normality for the disjoint blocks estimator of c(1) appealing to the Delta method.

Example 5.5.2. (Cluster index for sums) Assume the conditions of Proposition 5.3.4 and the
conditions of Theorem 5.2.1 hold for p = 1. Consider f to be the function x 7→ ‖x‖αα/‖x‖α1 , for
1 < α, and let c(1) = 1/E[‖Q(1)‖αα] < +∞. Hence one deduces an estimator

ĉ(1) =
(1

k

m∑
t=1

‖Bt‖αα
‖Bt‖α1

11(‖Bt‖1 ≥ ‖Bt‖1,(k))
)−1

, (5.5.28)

then an application of the Delta method yields

√
k
(
ĉ(1)− c(1)

) d−→ N (0,Var(‖Q(1)‖αα))/c(1)2 , n→ +∞.

5.6 Classical models

5.6.1 m0–dependent linear sequences

Consider (Xt) to be a regularly varying time series of index α > 0 that is m0–dependent linear
sequence.

Example 5.6.1. Let (Xt) be a moving average of order m0 ≥ 1 defined as:

Xt := Zt + ϕ1Zt−1 + · · ·+ ϕm0Zt−m0 , t ∈ Z. (5.6.29)

with iid regularly varying innovations (Zt) of index α > 0 takinf values in Rd. Then, by the
convolution closure of regularly varying vectors, we deduce regular variation for the strictly stationary
sequence (Xt).

Proposition 5.6.2. Let (Xt) be a m0–dependent sequence as defined in (5.6.29), regularly varying
of index α > 0. Then, for any p > 0, for any bounded function f ∈ G+(˜̀p) such that u 7→ f(·/u) is
non-increasing,

√
k(f̂Qp − fQp )

d−→ N (0,Var( f(YQ(p)) )), n→ +∞.
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Corollary 5.6.3. For m0-dependent time series as defined in (5.6.29), the α−cluster based es-
timator of the extremal index and the 1−cluster based estimator of the cluster index of sums in
(5.5.26) and (5.5.28), respectively, are asymptotically normally distributed and super efficient, i.e.
its asymptotic variance is null.

Proof Proposition 5.6.2. Conditions AC,CSp, hold by the arguments in Remark 5.3.5 and Re-
mark 5.3.6. Also, by Proposition 3.1. in [26], ‖Θ‖α < +∞ a.s. and Q(α) d

= Θ/‖Θ‖α. Let (ϕj) be
as in (5.6.29) and ΘZ

0 be the spectral measure of Z0 such that |ΘZ
0 | = 1 a.s.. Then,

Q(α) = (ϕj/‖ϕj‖α) ΘZ
0 , ∈ ˜̀α (5.6.30)

and c(p) = E[‖Q(α)‖αp ] < +∞. Then, all assumptions in Section 5.4.1 are satisfied. Moreover,
m0 dependent sequence have mixing coefficients (βh), (ρh) equal to zero for h > m0. Then all
assumptions from Theorem 5.2.1 and Lemma 5.4.3 hold and this concludes the proof.

Proof Corollary 5.6.3. Notice that if p = α, the expression in (5.6.30) yields to a deterministic
expression of |Q(α)| in the shift-invariant space. Then, the index estimators in (5.5.26) and (5.5.28)
with f : x 7→ ‖x‖α∞/‖x‖αα and f : x 7→ ‖x‖αα/‖x‖α1 , respectively, satisfy Var(f(YQ(α))) = 0. Finally,
using the change of norms formula in (5.3.21) we can also show Var(f(YQ(p))) = 0, for any p > 0,
and this concludes the proof.

5.6.2 Linear processes

We consider linear processes (Xt) satisfying the equation

Xt =
∑
t∈Z

ϕjZt−j , t ∈ Z, (5.6.31)

for a sequence of iid innovations (Zt), regularly varying of index α > 0. We assume the sequence
(ϕj) satisfies ‖ϕj‖α−δ < +∞ for some δ > 0. Then a stationary solution (Xt) exists [31]; see and
[120] for sharper conditions guaranteeing existence. Moreover,

P(|X0| > xn)

P(|Z0| > xn)
→

∑
t∈Z
|ϕj |α < +∞, n→ +∞ (5.6.32)

This relation is also shown in [31]. Examples of the linear model are stationary ARMA processes
with iid regularly varying noise (Zt) (cf. [18]). Moreover, if ΘZ

0 is the spectral measure of Z such
that |ΘZ

0 | = 1 a.s., then

Q(α) = (ϕj/‖ϕj‖α) ΘZ
0 , ∈ ˜̀α (5.6.33)

thus Q(α) admits a deterministic expression when projected to the shift-invariant space ˜̀α. In this
setting, we also have c(p) = E[‖Q(α)‖αp ] = ‖ϕj‖αp /‖ϕj‖αα which is finite if ‖ϕj‖p < ∞. In what
follows the linear processes we considered satisfy the aforementioned conditions.
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Proposition 5.6.4. Let (Xt) be the linear process as in (5.6.31). Let α/2 < p < α and (xn) be a
sequence satisfying n/xp∧(α−κ)

n → 0, for any κ > 0. If ‖ϕ‖p∧(α−κ) < +∞, then for all δ > 0,

lim
s→+∞

lim sup
n→+∞

P(‖X[0,n]/xn −X
(s)
[0,n]/xn‖

p
p > δ)

nP(|X0| > x)
= 0. (5.6.34)

where X(s)
t :=

∑
|j|≤s ϕjZt−j. Moreover, AC and CSp are verified, and for any f ∈ G+(˜̀p), bounded

continuous

f̂Qp
P−→ fQp , n→ +∞.

Moreover, assume the β-mixing conditions (5.2.10), (5.4.25), and the bias condition (5.2.11), (5.2.12),
then for any f ∈ G+(˜̀p), such that u 7→ f(·/u) is non-increasing,

√
k(f̂Qp − fQp )

d−→ N
(
0,Var( f(YQ(p)) )

)
, n→ +∞.

Remark 5.6.5. Computation of β-mixing bound rates for linear models are available in the liter-
ature. Typically, additional conditions on the sequence (ϕt) are assumed; see for example Lemma
15.3.1. in [108].

Corollary 5.6.6. For linear models in (5.6.31), verifying the assumptions of Proposition 5.6.4, the
estimators for the extremal index and the cluster index of sums in (5.5.26) and (5.5.28), respectively,
are asymptotically normally distributed and super efficient, i.e. its asymptotic variance is null.

Remark 5.6.7. For the extremal index, we can compare the asymptotic variance of the α−cluster
based estimator against the asymptotic variance σ2 for the blocks estimator in (5.5.27). For example,
for autoregressive process of order one AR(1), σ2 = 1− θ|X| ≥ 0, thus the α-cluster based estimator
has a an optimal asymptotic variance. The main drawback of the α-cluster based estimator is that
α also needs to be estimated. We could use a consistent Hill estimator of 1/α; see [87, 141], but this
subject requires further investigation.

Proof Corollary 5.6.6. Under the assumptions of Proposition 5.6.4 asymptotic normality holds.
Then, as if the steps of the proof of Corollary 5.6.3 we can compute the asymptotic variance using
the expression in (5.6.33). For the extremal and cluster index, both variance computation are zero
and this concludes the proof.

5.6.3 Solutions to affine stochastic recurrence equations under Kesten’s conditions

We study the causal solution to the equation:

Xt = AtXt−1 + Bt, t ∈ Z, (5.6.35)

where
(
(At,Bt)

)
is an iid sequence of non-negative random d× d matrices with generic element A,

and random vectors with generic element B, taking values in Rd.
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The celebrated paper of Kesten [103] demonstrates sufficient conditions for the existence of a
stationary solution to (5.6.35), admitting the causal representation

Xt =
∑
i≥0

At−i+1 . . .AtBt−i, t ∈ Z, (5.6.36)

where the summand for i = 0 is Bt, for i = 1 is AtBt−1, and so on; see [6, 24] and references
therein. We quote below Theorem 2.1. in [6] to explicit sufficient conditions for the existence of a
causal stationary solution as in (5.6.36). In this case, if Θ0 is the exponent measure of X0 such that

Θt = At · · ·A1Θ0, t ≥ 0

where (At) is an iid sequence distributed as A.

Theorem 5.6.8. (Existence of stationary solution) Let A, B be a d × d random matrix and a
Rd-valued random vector, respectively. Assume

E
[

log+ |A|op
]

+ E
[

log+ |B|
]
< +∞,

and assume the Lyapunov exponent of the iid sequence (At), distributed as A, is negative. Then,
the solution in (5.6.36) converges a.s. and is the unique strictly stationary causal solution to the
stochastic recurrence equation in (5.6.35).

Solutions (Xt) to the stochastic recurrence equation in (5.6.35) have attired high attention
because they can be regularly varying even when innovations ((At,Bt)), are light-tailed as first
noticed in [103]. Under the so-called Kesten’s assumptions, the extremes come from the products
of arbitrary length in (5.6.36); see [13] for a review, [74] for the Goldie and Kesten’s conditions
for univariate innovations, and [6] a treatement in the multivariate setting. Moreover, under these
Kesten’s type assumptions, the index of regular variation of (Xt), denoted α > 0, is given as the
unique solution to the equation

lim
n→+∞

n−1 logE
[
|A1 · · ·An|αop

]
= 0. (5.6.37)

The multivariate solution to (5.6.35) models typical econometric time series models such as
the squared ARCH(p) and the volatility of GARCH(p, q) processes. We review Theorem 2.4. and
Corollary 2.7. in [6] to state exact conditions leading to heavy-tailed solutions (Xt), from light-tailed
innovations ((At,Bt)).

Theorem 5.6.9. (Heavy-tailedness) Let
(
(At,Bt)

)
be an iid sequence of d × d matrices A with

non-negative entries, and non-negative Rd-valued random vectors B, B 6= 0 a.s., Assume also the
conditions below hold

1. For some κ > 0, E[|A|κop] < 1.
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2. A has no zero rows a.s.

3. The set Γ in (5.6.38) generates a dense group on R.

Γ = {ln |an · · ·a1|op : n ≥ 1,an · · ·a1 > 0, an, . . . ,a1 are in the support of A’s law }.

(5.6.38)

4. There exists κ1 > 0, E
[
(mini=1,...,d

∑d
t=1Aij)

κ1
]
≥ dκ1/2 and E[|A|k1op ln+ |A|op] < +∞.

Then, there exists a unique solution α > 0 to (5.6.37), and there also exists a unique strictly
stationary causal solution (Xt) to (5.6.37). Moreover, if E[|B|α] < +∞ and either d = 1 or d > 1

and α > 0 is not an even integer, then the finite-dimensional distributions of (Xt) are regularly
varying of index α > 0.

Proposition 5.6.10. Assume ((At,Bt)) is an iid sequence of d × d matrices A, and Rd-valued
vectors B, which satisfies the conditions of Theorem 5.6.9 and Theorem 5.6.8. Let (Xt) be the
causal regularly varying stationary solution to (5.6.35), with index α > 0. Assume also

E[|A|α−δop ] < 1, and E[|A|1+δ
op ] + E[|B|1+δ] < +∞,

for some δ > 0. Then, for all p > α/2, AC, CSp hold for all sequences (xn) such that n/xp∧α−κn →
0, for some κ > 0, as n→ +∞.

Proposition 5.6.11. Assume the conditions of Proposition 5.6.10 and let (Xt) be the causal regu-
larly varying stationary solution to (5.6.35), with index α > 0. Assume also the β-mixing conditions
(5.2.10), (5.4.25), and the bias condition (5.2.11), (5.2.12). Then for any f ∈ G+(˜̀p), such that
u 7→ f(·/u) is non increasing

√
k(f̂Qp − fQp )

d−→ N (0,Var( f(YQ(p)) )), n→ +∞.

Remark 5.6.12. Under the assumptions of Theorem 5.6.9 and Theorem 5.6.8, the stationary solu-
tion (Xt) of (5.6.35) is a Markov Chain. From Remark 5.3.2, further assumptions on A yield (βh)

has an exponential decay under the assumptions; see [23].

Example 5.6.13. Define the positive random variables A, B by logA
d
= N − 0.5, where N denotes

a centered and reduced Gaussian random variable, and B any bounded positive random variable.
Consider (Xt) to be the univariate stationary solution in (5.6.35). Then, (Xt) is regularly varying
with index α = 1 and E[(A)1−δ] < 1 for all δ > 0.

Remark 5.6.14. Let d > 1 and assume conditions 1. - 4. in Theorem 5.6.9. In this case, regular
variation as in (5.3.16) might not hold. In this case we can only show that linear projections xTX1

are regularly varying, for all x ∈ Rd \ {0}; see (2.11) in [6]. However, a Cramèr-Wold devise
entailing multivariate regular variation as in (5.3.16) only holds under further assumptions. For

128



example, if α > 0 is not an even integer then the assumptions of Theorem 5.6.9 imply regular
variation as in (5.3.16); see [89, 6, 7].

5.7 Proofs

5.7.1 Proof Theorem 5.2.1

Proof. Let f ∈ G+(˜̀p) be a fixed bounded function. Recall the set F containing two functions:
(xt) 7→ f(xt) and (xt) 7→ 1, and the family T in (5.7.39) defined by

T = {g̃Qp (u)}{g(·/u): u∈[1−ε,1+ε],g∈F}. (5.7.39)

for ε > 0 as in (5.2.11).
We separate the proof in two steps. We start by assuming the uniform asymptotic normality of

estimators indexed by T holds, and we show in this case (5.2.9) holds. In the second part of the
proof we will show the uniformity of the limit Gaussian process indexed by T .

For the first step of the proof, assume

√
k(g̃Qp (u)− u−αgQp )

d−→ G(g(·/u)), g̃Qp ∈ T ,

as n → +∞ holds uniformly and G is a Gaussian process with structure as in (5.2.15), that we
recall below

Cov(G(g(·/u)),G(h(·/v))) =

∫ ∞
u∨v

E[g(yQ(p)/u)h(yQ(p)/v)]d(−y−α)

= c(g(·/u), h(·/v))

for g, h ∈ F , and u, v ∈ [1− ε, 1 + ε]. We also write c(g(·/u), g(·/u)) = c(g(·/u)) in what follows.
Then, for g ∈ F , u ∈ [1− ε, 1 + ε], we have

√
k(g̃Qp (u)/gQp − u−α)

d−→ G(g(·/u))/gQp , n→ +∞,

Then, taking 1 ∈ F to be the constant function one: 1(xt) = 1, yields 1Qp = 1. Moreover,

√
k(1̃Qp (u)← − (u−α)←)

=
√
k
(
‖B1/xbn‖p,(bkuc) − u−1/α

)
, u ∈ [1− ε, 1 + ε].

Then, by an application of Vervaat’s lemma; see (5.9.5),

√
k
(
‖B1/xbn‖p,(bkc) − 1

) d−→ −α−1G
(
1(·/1)

)
,
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as n→ +∞. In particular ‖B1‖p,(bkc)/xbn
P−→ 1 and the joint convergence of distributions holds thus

√
k
(

(f̃Qp (u), ‖B1‖p,(k)/xb)− ((fQp (u), 1)
) d−→

(
G(f(·/u)),−α−1G(1(·/1)

)
,

uniformly for u ∈ [1− ε, 1 + ε], as n→ +∞. Furthermore,

√
k
(
f̂Qp − fQp

)
=
√
k fQp

(
f̃Qp ( ‖B1‖p,(k)/xbn )/fQp − 1

)
=
√
k fQp

(
f̃Qp (‖B1‖p,(k)/xbn)/fQp − (‖B1‖p,(bkc)/xbn)−α

)
+
√
k fQp

(
(‖B1/xbn‖p,(k) )−α − 1

)
d−→ fQp G(f(·/1)/fQp − 1)

To sum up,
√
k
(
f̂Qp − fQp

) d−→ N (0,Var(f(YQ(p))), and we recognize that the variance term can be
rewritten as in (5.2.9).

To conclude the proof, we must show

√
k(g̃Qp (u)− gQp )

d−→ G, g̃Qp (u) ∈ T ,

uniformly as n→ +∞. Recall, we assumed finite-dimensional convergence holds in (5.2.14). Under

the bias assumptions (5.2.11),(5.2.12), we can replace the expected value of the estimator g̃Qp (u)

directly by the limit gQp (u). Then, it remains to check asymptotic equicontinuity holds and this will
yield the uniformity of the asymptotic normality. To do so, we split the remaining of the proof into
two steps as follows. First, we have to show that the sequence (Bt)t=1,...,mn can be replaced by a
sequence (B∗t )t=1,...,mn , containing iid blocks distributed as B1. Second, we have to show that the
conditions (i), (ii), (iii), of Theorem C.4.5 in [108] hold; see also Theorem 2.3. in [51].

Let’s denote u0, s0 with u0 = 1− ε < + < 1 + ε = s0. Notice in our case, it is enough to check
equicontinuity separately over (g̃Qp (u))u∈[tu0,s0], for g ∈ F , as we only consider a family F containing
two functions. We fix g ∈ F . Let’s start by considering the semi-metric d(·, ·) defined as

d(g(·/u), g(·/s)) := |u−α − s−α|E[g(YQ(p))2], s, u > 0,

such that (g̃Qp (u))u∈[u0,s0] is totally bounded for this semi-metric. For the first part, for replacing
(Bt) by (B∗t ) we argue as in Section 10.6. in [108]. For any δ > 0,

P
(

sup
u,s∈[u0,s0]

d(g(u−1·),g(s−1·))<δ

√
k |g̃Qp (u)− g̃Qp (s)| > δ

)

≤ 2P
(

sup
u,s∈[u0,s0]

d(g(u−1·),g(s−1·))<δ

√
k |g̃Qp,∗(u)− g̃Qp,∗(s)| > δ/2

)
+ 4mnβbn .

where g̃Qp,∗(u) = 1
k

∑
t=1,...,mn,t odd g(B∗t /u xb)11(‖B∗t ‖p > uxb), and the last bound follows by Lemma
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2 in [58].
We are now in the framework of Theorem C.4.5. in [108] and it is enough to check conditions

(i),(ii),(iii) therein. The Lindeberg condition (i) is verified since g is bounded. We now show (ii)
holds (this is also condition (D1) in [51]). Under the bias conditions, convergence of the finite
dimensional distributions of T yields, for s > u,

kE[ (g̃Qp,∗(u)− g̃Qp,∗(s))2 ]

−→ c(g(·/u)) + c(g(·/s))− 2c(g(·/u), g(·/s))

=

∫ +∞

1
(u−α + s−α) g(yQ(p))2 − 2s−αg(yQ(p))g((s/u) yQ(p))d(−y−α).

Moreover, since v 7→ g(·/v) is a non-increasing function, then

lim
k→+∞

E[ (g̃Qp (u)− g̃Qp (s))2 ] ≤ |u−α − s−α|E[g(YQ(p))2]

= d(g(·/u), g(·/s)).

Then, to sum up we have shown

lim
δ↓0

lim sup
n→+∞

sup
u,s∈[u0,s0]

d(g(·/t),g(·/s))<δ

kE[ (g̃Qp (u)− g̃Qp (s))2 ] = 0.

Thus, from this we conclude (ii) holds. Finally, the entropy condition in (iii) holds with respect to
the random metric (dn, (g(·/u))u∈[u0,s0]) defined by

(
dn(g(·/u), g(·/s))

)2
=

1

k

mn∑
t=1

(
g(B∗t /(uxb))11(‖B∗t ‖p > uxb)− g(B∗t /(s xb))11(‖B∗t ‖p > sxb))

2.

Indeed, the family of functions (g̃Qp (t))t∈[t0,s0] is linearly ordered thus it forms a VC(2)-class (cf. [52],
Remark 2.11 and the discussion on condition (D3) in [51]). Hence, we conclude uniform asymptotic
normality of the estimators indexed by T . Finally, by the first step of the proof we have shown
Theorem 5.2.9 holds.

5.7.2 Proof Lemma 5.4.1

Condition (1) =⇒ (5.4.23)

We start by denoting disjoint blocks as

Bt := X(t−1)b+[1,b], B∗t := X∗(t−1)b+[1,b], t = 1, . . . ,m . (5.7.40)
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such that (B∗t )1≤t≤m is a sequence of iid blocks, distributed as B1, independent of (Bt)1≤t≤m Then,
the mean value theorem entails |e−x − e−y| ≤ |x− y|, thus

∣∣E[ exp
{
− 1

k

∑m
t=1f(x−1

b Bt)
}]
− E

[
exp

{
− 1

k

∑m
t=1f(x−1

b B
∗
t )
}]∣∣2

≤ E
[(

1
k

∑m
t=1f(x−1

b Bt)−
1
k

∑m
t=1 f(x−1

b B
∗
t )
)2]

= I.

The term I can be controlled using the correlation coefficients (ρh), defined in Definition 5.3.1. It
follows from stationarity and Theorem 1 in [157] that there exists a constant c > 0 such that

I ≤ 2 c m
k2
E
[
f(x−1

b Bt)
2
]

exp
{
c
∑blog2(n)c

t=0 ρb 2t
}

Moreover, by (5.3.19), for any function g ∈ G+(˜̀
p),

|mk E[g(x−1
b B1)]−

∫∞
0 g(yQ(p))d(−y−α)| → 0, n→ +∞.

Hence, if exp
{∑blog2(n)c

t=0 ρb 2t
}
/k → 0 as n→ +∞, (5.4.23) holds. Thus, since k → +∞ we deduce

condition (1) in Lemma 5.4.1 implies (5.4.23) and this concludes the proof.

(2) =⇒ (5.4.23)

Consider a sequence ` := `n → +∞. We denote disjoint blocks as

Bt,` := X(t−1)b+[1,b−`], t = 1, . . . ,m.

such that for ` = 0 we keep the notation in (5.7.40). Notice that for all δ > 0, ε > 0, and for every
bounded Lipschitz-continuous function f ∈ G+(˜̀p)

∣∣E[ exp
{
− 1

k

∑m
t=1f(x−1

b Bt)
}]
− E

[
exp

{
− 1

k

∑m
t=1f(x−1

b Btε)
}]∣∣

≤ E
[∣∣ 1
k

∑m
t=1f(x−1

b Bt)−
1
k

∑m
t=1f(x−1

b Btε)
∣∣]

≤ E
[

1
k

∑m
t=1

∣∣f(x−1
b Bt)− f(x−1

b Btε)
∣∣]

= o
(
mP(‖B1/xb

ε‖p > δ)/k
)

This term vanishes by condition CSp. Moreover, we denote I the following term

I =
∣∣E[ exp

{
− 1

k

∑m
t=1fε(x

−1
b Bt)

}]
− E

[
exp

{
− 1

k

∑m
t=1fε(x

−1
b Bt,`)

}]∣∣,
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where fε(xt) := f(xtε). Then, there exists a constant c > 0 such that

I ≤ c
1

k
P
(

max
1≤j≤m

max
1≤i≤`

|X(j−1)b−i+1| > εxb
)

≤ c
m

k
P(‖B1,`‖∞ > εxb)

≤ c
m`

k
P(|X0| > εxb) ∼ `/b (c ε−α/c(p)) = O(`/b).

Thus, we conclude that limn→+∞ `n/bn = 0 is a sufficient condition for I → 0 as n → +∞. Fur-
thermore, recall the definition of the mixing coefficients (βh) in Definition 5.3.1. Arguing similarly
as before it follows that

∣∣E[ exp
{
− 1

k

∑m
t=1fε(x

−1
b Bt,`)

}]
− E

[
exp

{
− 1

k

∑m
t=1fε(x

−1
b B

∗
t )
}]∣∣

≤ m

k
‖f‖∞2 dTV

(
L(Bt,l)⊗ L(X1)⊗ · · · ⊗ L(X1)︸ ︷︷ ︸

` times

, L(Bt)
)

≤ m

k
‖f‖∞ 2β`n → 0, n→ +∞.

we use first the definition of the total variation distance, and second a reformulation of the distance
in terms of the mixing coefficients (βh). Hence we deduce that (2) in Lemma 5.4.1 implies (5.4.23).

5.7.3 Proof Lemma 5.4.3

We start by proving the following auxiliary lemmas.

Lemma 5.7.1. Consider a stationary time series (Xt) satisfying the assumptions in Section 5.4.1.
Assume that for all t = 1, 2, . . . ,, ε > 0,

lim
s→+∞

lim
n→+∞

∑tb
i=(t−1)b+sP(|Xi| > εxb | |X0| > εxb) = 0. (5.7.41)

Then, for all t = 2, 3, . . . , we deduce for g, h ∈ G+(˜̀p)

lim
n→+∞

m

k
Cov( g(x−1

b B1), h(x−1
b Bt) ) = 0. (5.7.42)

Lemma 5.7.2. Consider a stationary time series (Xt) satisfying the assumptions in Section 5.4.1.
Assume one of the two conditions below holds

1. The mixing correlation coefficients (ρh) satisfy ρh → 0 as h→ +∞.

2. There exists a sequences (`n), satisfying `n → +∞, and

lim
n→+∞

mnβ`n/kn = lim
n→+∞

`n/bn = 0.
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Then, the relation below holds

lim
n→+∞

m

k
sup

t=2,...,mn

Cov( g(x−1
b B1)h(x−1

b Bt) ) = 0. (5.7.43)

Proof Lemma 5.7.1. Let f, f ′ : ˜̀p → R be Lipschitz-continuous bounded functions in G+( ˜̀p). From
condition CSp it follows that for t = 0, 1, 2, . . . ,

m

k
Cov( f(x−1

b B1)f ′(x−1
b B1+t) ) ∼ m

k
E[f(x−1

b B1)f ′(x−1
b B1+t)]

∼ m

k
E[f(x−1

b B1
ε
)f ′(x−1

b B1+t
ε
)], n→ +∞.

Moreover, using a telescopic sum decomposition we might rewrite the term above such that for any
s > 0,

m

k
E[f(x−1

b B1
ε
)f ′(x−1

b B1+t
ε
)]

∼
E
[

1
b

∑b
i=s

(
f(x−1

b X[0,i]
ε
)− f(x−1

b X[1,i]
ε
)
)
f ′(x−1

b Xi+(t−1)b+[1,b]
ε
)
]

c(p)P(|X0| > xb)

= I

Indeed, the finite terms in s are negligible as n→ +∞ by the Lipschitz-continuity of the function f .
Then, the term I can be bounded in absolute value by decomposing the function f ′ as a telescopic
sum again as follows. We write fε(xt) := f(xtε) and f ′ε(xt) := f ′(xtε) to simplify notation. Hence

|I| ≤ ‖f‖∞
E
[
11(|X0| > εxb)

1
b

∑b
i=s f

′
ε(x
−1
b Xbt−1cb+i+[1,b])

]
c(p)P(|X0| > xb)

≤ E
[
11(|X0| > εxb)

‖f‖∞
×1
b

∑b
i=s

∑b−1
j=1

(
f ′ε(x

−1
b X(t−1)b+i+[1,j])− f ′ε(x−1

b X(t−1)b+i+[1,j+1])
)]

c(p)P(|X0| > xb)

+‖f‖∞‖f ′‖∞
E[11(|X0| > εxb)× 1

b

∑b
i=s 11(|X(t−1)b+i+1| > εxb)]

c(p)P(|X0| > xb)

≤ ‖f‖∞‖f ′‖∞
E
[
11(|X0| > εxb)

1
b

∑b
i=s

∑b−1
j=1 11(|X(t−1)b+i+j | > εxb)

]
c(p)P(|X0| > xb)

+ o(1)

= O
(∑tb

i=(t−1)b+sP(|Xi| > εxb | |X0| > εxb))

Then, by letting first n → +∞ and then s → +∞ we obtain (5.7.42) for Lipschitz-continuous
function and this concludes the proof. Moreover, since for all g, h ∈ G(˜̀p) it still holds

m

k
Cov( g(x−1

b B1)h(x−1
b B1+t) ) ∼ m

k
E[g(x−1

b B1)h(x−1
b B1+t)]

then, it follows by a Portmanteau argument that (5.7.42) holds for all g, h ∈ G+(˜̀p).
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Finally, the proof of Lemma 5.7.2 follows similar arguments as in the proof of Lemma 6.7 in [28]
as we show next.

Proof Lemma 5.7.2. Considering the same notation as in Lemma 5.4.1. We start by showing that
the condition (1) is sufficient to obtain (5.7.43).

(1) =⇒ (5.7.43)

We fix t ∈ N and consider ξ ∈ N such that ξ > t > 1. Consider bounded functions g, h ∈ G(˜̀p),
and let κ > 0 be such that f, g, vanish at the interior of the `p-sphere of radius κ. Then, by the
definition of the correlation coefficients,

m

k
Cov(g(x−1

b B1)h(x−1
b B1+ξ)]) ≤ ρtb

m

k

(
E[g(x−1

b B1)2]E[h(x−1
b B1)2]

)1/2
= O(ρtb ),

as n→ +∞. Then, by letting n→ +∞ we conclude

lim
t→+∞

lim
n→+∞

sup
t=2,...,mn

m

k
Cov( g(x−1

b B1)h(x−1
b Bt) ) = 0. (5.7.44)

Finally, for ξ ≤ t we apply Lemma 5.7.1 which together with (5.7.44) yields to (5.7.43).

(2) =⇒ (5.7.43)

Arguing as in the proof of Lemma 5.7.1, it is enough to establish the relation (5.7.43) for Lipschitz
continuous bounded functions f, f ′ ∈ G+(˜̀p) vanishing at the interior of the unity sphere in `p. For
ε > 0, recall the notation fε(xt) = f(xtε). Recall also we assume the Lipschitz-continuity of the
function f ∈ G(˜̀p) and condition CSp. Then, as in the proof of Lemma 5.7.1, it is enough to show
that for all ε > 0,

lim
n→+∞

sup
ξ>1

m

k
Cov(fε(x

−1
b B1)f ′ε(x

−1
b B1+bξc)) = 0.

Moreover, by similar steps as in the proof of Lemma 5.4.1 we can replace Bt by Bt,` inside the
covariance since we assumed `n/bn → 0 as n→ +∞. Hence,

m

k
Cov(fε(x

−1
b B1,`)f

′
ε(x
−1
b B1+bξc)) ≤ 2‖f‖∞‖f ′‖∞

m

k
β`+(ξ−1)b

Thus, taking the supremum for ξ > 1 we conclude the proof letting n→ +∞.
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Proof Lemma 5.4.3. We write m = mn = bn/bnc, k = bmP(‖Bt‖p > xb)c ∼ c(p)nP(|X0| > xb).
Consider bounded functions g, h ∈ G+(˜̀p),

Cov
(

1
k

∑m
t=1g(x−1

b Bt),
1
k

∑m
t=1h(x−1

b Bt)
)

=
m

k2
Var[g(x−1

b B1)h(x−1
b B1)] +

2

k2

∑
1≤t<j≤mCov

(
g(x−1

b Bt), h(x−1
b Bj)

)
=

(I + II)

k

The second term II can be rewritten in the following way by stationarity:

II = m
k

1
m

∑
1≤t<j≤m Cov(g(x−1

b Bt)h(x−1
b Bj))

= 1
m

∑
1≤t≤m

∑
1<j−t≤m−t

m
k Cov(g(x−1

b B1)h(x−1
b Bj−t))

= 1
m

∑
1≤t≤m

∑
1<j≤m−t

m
k Cov[g(x−1

b B1)h(x−1
b Bj)]

= 1
m

∑
1<j≤m−1

∑
1≤t≤m−j

m
k Cov[g(x−1

b B1)h(x−1
b Bj)]

=
∑

1<j≤m−1

(
1− j

m

)
m
k Cov(g(x−1

b B1)h(x−1
b Bj)).

Then, following the lines of Lemma 5.7.2 we conclude that assuming
∑mn

t=1 ρtbn → 0 we deduce
II → 0. Also, if mn/kn

∑mn
t=1 β`n+(t−1) → 0 then II → 0 as n→ +∞.

Finally, notice that for bounded functions g, h ∈ G+(˜̀p),

I =
m

k
Var(g(x−1

b B1)h(x−1
b B1))

→ c(g, h) :=

∫ ∞
0

g(yQ(p))h(yQ(p))d(−y−α).

and this concludes the proof.

5.7.4 Condition finite limit c(p)

Lemma 5.7.3. Let α/2 < p < α. Assume the anti-clustering condition:

lim
l→+∞

lim sup
n→+∞

n∑
|t|=l

E[(|x−1
n Xt|p ∧ 1)11(|X0| > xn)]

P(|X0| > xn)
= 0. (5.7.45)

Then ‖Θ‖p < +∞ a.s. and also c(p) < +∞.

Remark 5.7.4. Conditions of the type (5.7.45) were considered also in [5] in the context of stable
central limit theorems for regularly varying time series.

5.7.5 Proof Lemma 5.7.3:

Let p < α. Condition (5.7.45) implies the classical anti-clustering condition which implies
|Θt| → 0 as |t| → +∞. Moreover, by the mean value theorem, c(p) < +∞ if one proves
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E[(
∑∞

t=0 |Θt|p)α/p−1] < +∞. Moreover, for p > α/2, by Jensen’s inequality and subadditivity
we deduce it suffices to check

∞∑
t=0

E
[
|Θt|α−p11(|Θt| > 1)

]
+
∞∑
t=0

E[|Θt|p ∧ 1] <∞. (5.7.46)

We start by showing ∑
t∈Z

E[|Θt|p ∧ 1] <∞. (5.7.47)

Notice that (5.7.47) implies ‖Θ‖p < +∞ a.s. since |Θt| → 0 as |t| → +∞ a.s., and (5.7.47) follows
by (5.7.45) and the Cauchy criterion as for any ε > 0 there exists a K sufficiently large such that
for all l ≥ K, h ≥ 0,

lim sup
n→+∞

l+h∑
|t|=l

E[(|x−1
n Xt|p ∧ 1)11(|X0| > xn)]

P(|X0| > xn)
=

l+h∑
|t|=l

E[|YΘj |p ∧ 1] ≤ ε,

where the last equality follows by regular variation. Thus we conclude (5.7.47) holds. Finally, by
the time-change formula we deduce

∞ >
∑
t∈Z

E[|Θt|α(|Θt|−p ∧ 1)]

>
∑
t∈Z

E[|Θt|α−p11(|Θt| > 1)],

thus (5.7.46) holds. This concludes the proof.

5.8 Proofs examples

5.8.1 Proof Proposition 5.6.4

Proof. First, notice that (5.6.34) can be written as, for all δ > 0,

lim
s→+∞

lim sup
n→+∞

P(
∑n

t=1 |
∑
|j|>s ϕjZt−j/xn|p > δ)

nP(|X0| > x)
= 0. (5.8.48)

Once we have verified (5.8.48), AC and CSp will follow straightforwardly since, for all s > 0,
(X

(s)
t ) given by X

(s)
t =

∑
|j|≤s ϕjZt−j is an m0-dependent sequence with m0 = 2k+ 1, and satisfies

AC,CSp, from Example 5.6.1. Moreover, consistency of Lipschitz continuous functionals holds.
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Then, for all s > 0,

P(|f̃Qp,s − f̃p
Q
| > ε) ≤ ε−1

E[|f(X
(s)
[0,b])− f(X[0,b])|]

P(‖X[0,b]‖p > xb)

≤ δ +
P(‖X[0,b]/xb −X

(s)
[0,b]/xb‖p > δε−1)

P(‖X[0,b]‖p > xb)

where f̃Qp,s is the deterministic threshold estimator in (5.2.8) for X(s). Then, we can conclude letting
first n and then s tend to infinity and finally δ to zero. To resume, for any f ∈ G+(˜̀p) bounded

Lipschitz continuous f̃Qp
P−→ fQp and following the proof steps in Theorem 4.1. [26] we conclude

consistency of f̂Qp
In what follows, we focus on showing (5.8.48). Let’s consider a Taylor decomposition of the

function | · |p. For a, b,∈ R,

|a+ b|p = |a|p + p sign(a)|a|p−1b+
p(p− 1)

2
|a|p−2b2 + · · ·+R[p](a, b)

where the remaining term can be written as

R[p] = R[p](a, b) ≤
p(p− 1) · · · (p− [p])

[p]!
|b− ξa|p−[p]b[p],

and ξ ∈ [0, 1]. Then,

|
∑
|j|>k

ϕjZt−j/xn|p ≤ |ϕtZ0/xn|p

+ p sign(ϕtZ0)|ϕtZ0/xn|p−1
( ∑
|j|>k
j 6=t

|ϕjZt−j/xn|
)

+ · · ·+R[p].

Then, by subadditivity of the function x 7→ xp−[p], denoting (|Zt|) by (Zt),

|
∑
|j|>k

ϕjZt−j/xn|p ≤ |ϕtZ0/xn|p + c|ϕtZ0/xn|p−1
∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
∣∣

+ · · ·+ c|ϕtZ0/xn|p−[p]
∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
∣∣[p]

+c
∑
|j|>k
j 6=t

||ϕj |Zt−j/xn|p−[p]
∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
∣∣[p]

= I0,t + I1,t + · · ·+ I[p],t + I[p]+1,t

where c > 0 is again a constant of no interest, only depending on p, and we have decomposed the
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previous sum into finite terms. In fact, for p ≤ 1, we can use the subadditivity yielding

|
∑
|j|>k

ϕjZt−j |p ≤
∑
|j|>k

|ϕjZt−j |p = I[p]+1,t.

In the following, we show that for all i = 0, . . . , [p] + 1,

lim
k→+∞

lim sup
n→+∞

P(
∑n

t=1 Ii,t > δ)

nP(|X0| > xn)
= 0. (5.8.49)

To show (5.8.49) we consider a typical truncation argument. It will be enough to show that for all
ε, δ > 0,

lim
k→+∞

lim sup
n→+∞

P(
∑n

t=1 Ii,t
ε
> δ)

nP(|X0| > xn)
+

P(
∑n

t=1 Ii,tε
> δ)

nP(|X0| > xn)
= 0. (5.8.50)

where the truncated terms are defined as follows, for i = 0, . . . , [p] + 1

Ii,t
ε

:= |ϕtZ0/xn
ε|p−i

∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
ε∣∣i,

I[p]+1,t
ε

:=
∑
|j|>k
j 6=t

|ϕjZt−j/xn
ε|p−[p]

∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
ε∣∣[p],

Ii,t
ε

:= |ϕtZ0/xnε|
p−i∣∣ ∑

|j|>k
j 6=t

|ϕj |Zt−j/xn
ε

∣∣i,
I[p]+1,t

ε
:=

∑
|j|>k
j 6=t

|ϕjZt−j/xn
ε
|p−[p]

∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
ε

∣∣[p],
We study first the truncation from below. For i = 0, · · · , [p], by the Markov’s inequality,

P(
∑n

t=1 Ii,tε
> δ) ≤ δ−1nE

[
|ϕtZ0/xnε|

p−i]E[∣∣ ∑
|j|>k
j 6=t

|ϕj |Zt−j/xn
ε

∣∣i]
= o(nP(|Z0| > xn))
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where the last relation holds by Karamata’s theorem. For the last term, by Markov’s inequality

P(
∑n

t=1 I[p]+1,t
ε
> δ)

≤ δ−1n
∑

i1,··· ,i[p]+1

|ij |>k

|ϕi1 · · ·ϕi[p] ||ϕi[p]+1
|p−[p]

×E[|Zi1/xnεϕ−1
i1

· · ·Zi[p]/xn
εϕ−1
i[p]

||Zi[p]+1
/xn

εϕ−1
i[p]+1

|p−[p]]

= δ−1n
∑
|j|>k

|ϕi|pE[|Zi/xnεϕ−1
i

|p] + o(nP(|Z0| > xn))

≤ δ−1nε−α+δ
∑
|j|>k

|ϕi|p+α−δ + o(nP(|Z0| > xn))

where the last relation holds by an application of Karamata’s theorem and Potter’s bounds. Finally,
we conclude

lim
k→+∞

lim sup
n→+∞

P(
∑n

t=1 Ii,tε
> δ)

nP(|X0| > xn)
= 0,

letting first n→ +∞ and then k → +∞.
We focus now on the terms from the truncation from above. In this case, assuming n/xpn → 0,

it will be equivalent to show

lim
k→+∞

lim sup
n→+∞

P(
∑n

t=1 Ii,t
ε − E[Ii,t

ε
] > δ)

nP(|X0| > xn)
= 0.

In this case we use Chebychev’s inequality which yields

P(
∑n

t=1 Ii,t
ε − E[Ii,t

ε
] > δ) ≤ 2 δ−2 n

n∑
t=0

Cov(Ii,0
ε
, Ii,t

ε
)

As in the arguments for the truncation from above, the main difficulty lied in showing the term
i = [p] + 1 is negligeable. To handle this terms we compute the covariances

Cov(I[p]+1,0
ε
, I[p]+1,t

ε
)

=
∑

i1,··· ,i[p]+1

`1,··· ,`[p]+1

|ij |>k,|`j |>k

|ϕi1 · · ·ϕi[p] ||ϕi[p]+1
|p−[p]|ϕ`1 · · ·ϕ`[p] ||ϕ`[p]+1

|p−[p]

×Cov(|Zi1/xn
εϕ−1
i1 · · ·Z−i[p]/xn

εϕ−1
i[p] ||Z−i[p]+1

/xn
εϕ−1
i[p]+1 |p−[p],

|Zt−`1/xn
εϕ−1
`1 · · ·Zt−`[p]/xn

εϕ−1
[p] ||Zt−`[p]+1

/xn
εϕ−1
`[p]+1 |p−[p])
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such that in the above term the covariance vanishes for all except a finite number of index t. Then,

n∑
t=0

Cov(I[p]+1,0
ε
, I[p]+1,t

ε
) =

∑
j∈Z
|ϕj |2pE[|Z−j/xn

ϕ−1
j ε|2p] + o(P(|X0| > xn))

∼ ε2p−α
∑
j∈Z
|ϕj |2p+α−δP(|X0| > xn) + o(P(|X0| > xn))

The last step holds by an application of Karamata’s theorem. Finally, since p > α/2 we can let
n→ +∞ and then we conclude letting ε ↓ 0. In this case,

lim
ε↓0

lim sup
n→+∞

∑n
t=0 Cov(Ii,0

ε
, Ii,t

ε
)

P(|X0| > xn)
= 0, (5.8.51)

for i = [p] + 1. Then, for i = 0, . . . , [p] we can show with similar calculations that (5.8.51) holds.
Finally, this shows (5.8.50), and this concludes the proof.

5.8.2 Proof Proposition 5.6.10

Let (Xt) be the causal stationary solution to (5.6.35), admitting the representation in (5.6.36).
We assume it is regularly varying with tail index α > 0. We will denote the products Πi+1,t :=

Ai+1 · · ·At, i, t ∈ Z with i < t. Then, backward computations yield

Xt = ΠtX0 +Rt, t ≥ 1, (5.8.52)

where

Πi,j := Ai · · ·Aj , Rt :=
t∑

j=1

Πj+1,tBj t ≥ 1, i ≤ j.

with the conventions: Π1,t = Πt and Πt+1,t = Id. Notice that the remaining Rt is measurable with
respect to σ

(
(Ai,Bi)1≤i≤t

)
and is independent of the sigma-field σ

(
(Xi)i≤0

)
.

Condition AC has been shown for Theorem 4.17 in [121]. Then we focus on showing CSp holds.
For this purpose, we require the auxiliary results that we state below.

Lemma 5.8.1. Let (Xt) be a regularly varying sequence of index α > 0 and assume for α/2 < p ≤ α,
and for any sequence `n → +∞, the following relation holds

sup
x∈Λn

P
(∣∣‖X[1,n]/x

ε‖pp − E[‖X[1,n]/x
ε‖pp
∣∣ > δ

)
nP(|X0| > x)

(5.8.53)

≤ c
(
`nE[|X0/xn

1|p] + ε2p
n∑

t=`n+1

βt/P(|X0| > xn)
)
, xn > x0. (5.8.54)

for a constant c > 0. Suppose also that (Xt) has β−mixing coefficients (βt) verifying βt = O(t−κ)

for some κ > 1 + α/p+ δ, then condition CSp holds uniformly over (xn,+∞), for any constant xn
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verifying limn→+∞ nP(|X0| > xn) = 0.

Lemma 5.8.2. Let (Xt) be a causal stationary solution to the equation (5.6.35). Assume it is
regularly varying of index α > 0 for a sequence of iid

(
(At,Bt)

)
innovations and assume E[|A|α−δop ] <

1 for some δ > 0. Then, for all p > α/2, (5.8.54) holds for any choice of `n. Then, if n/xpn → 0

and p > α/2, CSp holds.

Remark 5.8.3. In Lemma 5.8.1 and Lemma 5.8.2 he have shown a little more. Actually, we
showed that (βh) mixing condition are sufficient to show condition CSp holds uniformly in the sense
limε→0 lim supn→+∞ (5.8.53) = 0 over the uniform regions Λn := (xn,+∞) where (xn) satisfies
nP(|X0| > xn) → 0. In this case it is possible to extend the large deviation results for p−norms
to uniform regions following the approach in [121]. This result extends the setting in Theorem 4.17
[121] where only bounded regions where considered.

Finally, from Lemma 5.8.1 and Lemma 5.8.2 we conclude Proposition 5.6.10 holds. The proof
is concluded as long as we have shown these auxiliary results.

Proof Lemma 5.8.1. The bound in (5.8.54) can be decomposed as c(I1 + I2). For I1 to go to zero
one can choose `n := xp−δn for some δ > 0. In this case, one can bound the second term up I2 by

n∑
t=`n+1

βt/P(|X0| > xn) = O
(∑n

t=`n+1t
−κ/P(|X0| > xn)

)
= O

(
`−κ+1
n /P(|X0| > xn)

)
≤ O(x−κ(p−δ)+(p−δ)+(α+δ)

n ).

Then I2 vanishes as n→ +∞ if κ > 1 + (α+ δ)/(p− δ) > 1 + α/p+ δ where the last bound holds
by Karamata’a theorem and plugging in the value for `n.

Proof Lemma 5.8.2.
Case p > α/2 We will use that is p < α then nE[|Xt/xn

ε|p] = o(1).

Let’s write X′t := ΠtX
′
0 + Rt with X′0 independent identically distributed as X0. Indeed,

this corresponds to the solution of equation (5.6.35) with innovations
(
(A′t,B

′
t)
)
where (A′t,B

′
t) =

(At,Bt) for t ≤ 0 and (A′t,B
′
t)t≥1 is an iid sequence independent of (At,Bt)t≤0. Then,

P
(∣∣‖X[1,n]/x

ε‖pp − E[‖X[1,n]/x
ε‖pp
∣∣ > δ

)
≤ 2n

n∑
t=0

It
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where It = Cov(|X0
ε|, |Xt

ε|). Thus,

It = E
[
|X0/xn

ε|p|Xt/xn
ε|p
]
− E

[
|X0/xn

ε|p|X′t/xn
ε|p
]

≤ E
[
|X0/xn

ε|p
(
|Xt/xn

ε|p − |X′t/xn
ε|p
)

+

]
≤ E

[
|X0/xn

ε|p
(
|Xt/xn|p − |X′t/xn|p

)
+

11(|Xt/xn| ≤ ε)11(|X′t/xn| ≤ ε)
]

+E
[
|X0/xn

ε|p |Xt/xn
ε|p11(|X′t/xn| > ε)

]
= It,1 + It,2.

Assume p > 1. Then, for the first term It,1, a Taylor decomposition yields

It,1 ≤ pE
[
|X0/xn

ε|p|X′t/xn −Xt/xn
2 ε||X′t/xn

ε
+ ξ
(
X′t/xn −Xt/xn

2ε)|p−1
]

= pE
[
|X0/xn

ε|p|ΠtX′0/xn −ΠtX0/xn
2 ε||X′t/xn

ε
+ ξ
(
ΠtX′0/xn −ΠtX0/xn

2ε)|p−1
]

for some random variable ξ ∈ (0, 1) a.s. Then, by Jenssen’s inequality we have that there exists a
constant c > 0 such that

It,1 ≤ p2(p−1)+ E
[
|X0/xn

ε|p|ΠtX′0/xn −ΠtX0/xn
2 ε||X′t/xn

ε|p−1
]

+p2(p−1)+ E
[
|X0/xn

ε|p|ΠtX′0/xn −ΠtX0/xn
2 ε|p

]
≤ cE

[
|X0/xn

ε|2p]1/2E
[
|ΠtX′0/xn

4 ε|2p
]1/2

≤ c
(
E
[
|X0/xn

ε|2p]E
[
|Πt|α−δ

]
P(|X0| > xn)

)1/2
.

= O
((
ε2p−αE[|Πt|α−δ

])1/2P(|X0| > xn)
)
.

The last result holds by an application of Potter’s bounds and Karamata’s theorem. Then, if
E[|A|α−δ] < 1 we conclude limε↓0 lim supn→+∞

∑n
t=1 It,1/P(|X0| > xn) = 0. If p < 1 then we can

use a subadditivity argument and we conclude by similar steps. Now we look at the term It,2

It,2 := E
[
|X0/xn

ε|p |Xt/xn
ε|p11(|X′t/xn| > ε)

]
≤ E

[
|X0/xn

ε|p |ΠtX0/xn
ε|p11(|X′t/xn| > ε)

]
+ E

[
|X0/xn

ε|p |Rt/xn
2ε|p11(|X′t/xn| > ε)

]
+E
[
|X0/xn

ε|p 11(|ΠtX0/xn| > ε)11(|X′t/xn| > ε)
]
.

= O(E
[
|X0/xn

ε|p
]
E
[
|Rt/xn

2ε|p11(|X′t/xn| > ε)
]

Then,

lim
ε↓0

lim sup
n→+∞

n∑
t=1

It,2/P(|X0| > xn) = O
(
nE
[
|X0/xn

ε|p
]
P(|X0/xn| > εxn)

)
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In this case we argue as in Lemma 5.8.1 and write

P
(∣∣‖X[1,n]/x

ε‖pp − E[‖X[1,n]/x
ε‖pp
∣∣ > δ

)
≤ 2n

`n∑
t=0

It +

n∑
t=`n+1

It.

≤ O(`nE[|X0/xn
ε|p] +

n∑
t=`n+1

It)

≤ O(`nnE[|X0/xn
ε|p] + nε2p

n∑
t=`n+1

βt)

where in the last bound we use the covariance inequality for the (βh) mixing coefficients. Finally,
notice that if n/xpn → 0 then CSp holds without additional mixing conditions.

5.9 Annexes

Theorem 5.9.1. (Karamata’s theorem) Let X be a regularly varying random variable with index
α > 0. Then, the following asymptotic bounds hold

lim
x→+∞

E[|X/x|p11(|X| ≤ x)

P(|X| > x)]
=
p− α
α

, if p > α

lim
x→+∞

E[|X/x|p11(|X| > x)]

P(|X| > x)
=
p− α
α

, if p < α.

Theorem 5.9.2. (Potter’s bounds) Let X be a regularly varying random variable with index α > 0.
Then, there exists ε > 0,x0 > 0, c0 > 0 such that for all x > y > x0,

c−1(x/y)−α−ε ≤ P(X > x)

P(X > y)
≤ c(x/y)−α+ε.

Consider the multivariate version of Breiman’s lemma proven in [6] extending Breiman’s uni-
variate result in [19].

Theorem 5.9.3. (Multivariate Breiman’s lemma) Let X0 be an Rd-values regularly varying vec-
tor with index α ≥ 0 and let A be a random matrix in Rq×d, independent of X0. Assume 0 <

E[ |A|α+δ
op ] < +∞ for some δ > 0. If nP(a−1

n X0 ∈ ·)
v−→ µ :=

∫∞
0 P(yΘ0 ∈ ·)d(−y−α), where

|Θ0| = 1 a.s., then

nP(a−1
n AX0 ∈ ·)

v−→ µ̃ :=

∫ ∞
0

P(yAΘ0 ∈ ·)d(−y−α), n→ +∞

where v−→ denotes vague convergence on Rd \ {0} and Rq \ {0} respectively.
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Remark 5.9.4. In particular, under the assumptions of Theorem 5.9.3, regular variation on Rq

holds if the probability P(|AΘ0|op > 0) is strictly positive.

Theorem 5.9.5. (Vervaat’s lemma) Let (Fn)n=0,... be a sequence of D[0,+∞)-valued elements and
F0 has continuous paths. Assume Fn has non decreasing paths there exists kn → +∞ such that

kn(Fn(t)− t) d−→ F0(t), n→ +∞

in D(0,+∞). Then,
kn(Fn(t)← − t) d−→ −F0(t)

See Proposition 3.3. in [143]
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Conclusions

This thesis focuses on the multivariate study of extremal time dependencies of heavy-tailed
stationary time series. The heavy-tailed phenomenon aims to model random mechanisms attain-
ing high-intensity levels regularly. For example, in hydrology, heavy rainfall follow this principle
[102]. Furthermore, extreme weather conditions produced by storms/fronts typically entail large
rainfall amounts, which can be recorded on numerous days and can have extensive spatial coverage.
Naturally, neighboring weather stations will record, let’s say, a storm, on the same day or week.
Overall, the meteorological dynamics lead to temporal and spatial dependencies in the hydrology
data sets. Moreover, modeling the frequency and magnitude of high-intensity precipitation levels
is critical for constructing coverage policies and infrastructure plans to protect human, societal,
and environmental valuables from hazards. Extreme value theory (EVT) is essential for the risk
assessment of this heavy-tailed phenomenon. Actually, a significant component of environmental
risk is its interconnected aspect [69]; thus, the spatiotemporal considerations are essential for ac-
curately modeling heavy rainfall. For example, flooding often occurs due to heavy rainfall records
co-occurring in the same region and period, overloading the drainage systems. For these reasons,
Chapter 4 has proposed to model regional fall daily rainfall amounts in France (see Figure 1.1),
from the data set consisting of three different regions introduced in Chapter 1, as a multivariate
stationary regularly varying time series.

Consider a stationary regularly varying time series (Xt), taking values in (Rd, | · |), with (tail)
index α > 0. Motivated by the rainfall data presented in Chapter 1, this thesis had two main
objectives. First, to present a theoretical framework for modeling heavy-tailed extremes in space
and time, and second, to propose new inference procedures tailored to aggregate spatiotemporal
extremes thoughtfully. To achieve the first goal, I have proposed to model spatiotemporal features
of extremal `p-blocks, i.e., blocks X[0,n] with a large `p-norm, through p-clusters Q(p) ∈ `p, for
p > 0, (see Theorem 2.2.1). Comparing the asymptotic results for different choices of p (see
Proposition 2.3.1), has pointed to the α-cluster Q = Q(α) ∈ `α to be a good candidate for trailing
the spatiotemporal characteristics of extreme periods, where α > 0 is the (tail) index. Actually,
extremal `∞-blocks had been previously studied and lead to the cluster (of exceedances) theory. The
asymptotics of extremal `∞-blocks already demonstrated to be helpful to obtain theoretical results
for heavy-tailed time series in [40, 8, 9]. My work has extended the classical approach undertaken
in [40] for modeling extremal `∞-blocks; see also [40, 10, 9, 138, 28, 108]. In my case, I have studied
extremal `p-blocks, for p ∈ (0,+∞]. For p < ∞, my approach was built on the theory of large
deviations of sums of heavy-tailed time series; see [121, 123].
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Concerning the second goal of this thesis, I have proposed new inference methodologies which
aggregate spatiotemporal extremes using the `α-norm. The new procedures I presented are justified
by the asymptotics derived for extremal `α-blocks in Theorem 2.2.1. I have addressed cluster
inference in Chapters 2, 3, and marginal inference in Chapter 4. For cluster inference, I have
proposed disjoint blocks estimators to infer cluster statistics from p-clusters using extremal `p-
blocks, for p > 0. I have stated consistency of the disjoint blocks estimators in Theorem 2.4.1,
and asymptotic normality in Theorem 5.2.1. To compare inference procedures, recall a relationship
between p-clusters has been established (see Proposition 2.3.1). It follows that the same constant can
be estimated from different pairs fp, p, by letting a suitable functional fp : `p → R act on extremal
`p blocks. Inference based on extremal `α-blocks has proven to be advantageous compared to `∞-
based inference in terms of bias. For example, the extremal index can be estimated from extremal
`α-blocks (see Corollary 2.4.2). Concerning marginal inference, I have introduced the stable sums
method to improve high return levels inference of X0. This new method is explained in Algorithm 1,
and it is justified by the asymptotics of extremal `α-blocks. Roughly speaking, the method starts by
computing the `α-norm of disjoint short periods to create a new sample. Then, it relies on central
limit theory of heavy-tailed increments to extrapolate high quantiles from the new sample of `α-
norms. Actually, using the (tail) index α > 0 for improving inference procedures had been already
studied in [10, 39, 50]. The α-cluster theory, from the new large deviation results in Theorem 2.2.1,
has proven to be helpful to pursue this approach, since the new inference methodologies I presented
are built on the asymptotics of extremal `α-blocks.

To conclude, the α-cluster, defined to model extremal `α-blocks, has demonstrated to be a
nice candidate to capture heavy-tailed extremes with spatial and temporal coverage. Inference
methodologies based on extremal `α-blocks have appeared to be robust to handle time dependencies.
Finally, I want to highlight how aggregating all the recordings from the underlying extreme event
(which were recorded over space and time) can be advantageous for enhancing inference. In terms of
robustness, using the `α-norm proved to be more fruitful than, for example, picking only the largest
value in a short period. Nevertheless, even in the stationary setting, many theoretical and practical
challenges remain to improve the risk estimation of spatiotemporal data sets. For example, from
a theoretical perspective, computations of the α-clusters are unavailable for many classical models.
Concerning the practical difficulties, notice I have not fully accounted for the uncertainties from
estimating the index of regular variation α in the methodologies presented in this thesis. Moreover,
statistical methods for extremes come in several steps, where the first step is typically choosing
a high threshold or selecting a block length. In this scenario, comparing and scoring statistical
procedures for extremes is complex due to multiple-steps estimation and hyperparameter tuning.
Overall, a list of open questions can be very long. I conclude by detailing three future perspectives
of my work.
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Future perspectives

• We have studied extremal `α-blocks in Chapter 2. We have mentioned the α-cluster is a
good candidate to characterize extremal spatiotemporal features. They were defined as the
spectral component in `α of the spectral tail measure, i.e., Q(α) = Θ/‖Θ‖α. Computations
of the forward spectral tail: (Θt)t≥0, are available for classical models like linear models and
stochastic recurrence equations (SRE). However, less is known about the backward spectral
tail (Θt)t≤0 for the (SRE) under the Kesten’s conditions. A methodology for inferring the full
spectral tail of stochastic recurrence equations should improve α-cluster inference. Indeed,
we have discussed cluster inference in Chapters 2, 3, only through non-parametric approaches
based on disjoint blocks estimators. Imposing a Markov structure could improve estimates of
α-cluster statistics.

• We have presented in Chapter 4 the stable sums method for multivariate high quantile in-
ference. We have proposed to aggregate spatiotemporal data through the `α-norm. In this
case, the univariate `α-norm drives the extreme behavior of the d-variate time series. For high
return levels inference, in the first step we model the sums of α-powers, and then we allocate
weights m(j), for j = 1, . . . , d, to each coordinate to retrieve marginal features. Our approach
focuses on extremal sets: {Xj > x}, j = 1, . . . , d, but we can retrieve other d−variate ex-
tremal features similarly. For example, inference on sets of the form {max{Xi, Xj} > x} could
be possible while allocating new weights m(i, j). In practice, for a full risk assessment, it is
important to model compound multivariate extremes like sites i, j, recording large amounts
simultaneously. For example, in hydrology, a frequent cause of flooding is the saturation of
drainage systems due to heavy rainfall recorded over the same region at the same time. This
application motivates the study of compound spatiotemporal extremes. The theoretical tools
in this thesis could help tackling this problems.

• Implementation of the stable blocks method from Algorithm 1 assumes that the vector coor-
dinates reach high levels with similar intensities. Our motivation behind this assumption is
that, for climatological time series, extremes can have a similar source explained by shared
weather mechanisms. Extreme weather conditions then propagate in space and time following
physical laws. In this setting, to apply our methodology to a larger spatial grid, we must
first detect spatial patches with akin extreme climates. A spatial cluster detection for similar
extreme events is studied in [112]. Coupling these techniques with our stable sums heuristic
opens the road to new research perspectives.
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Appendix A: Introduction to extremes

A.1 Outline of Chapter A

In this chapter we review classical theory and statistical methodology for extremes. We introduce
univariate extreme value theory in Section A.2. We present the classical multivariate extension in
Section A.3. The most common statistical aspects of both univariate and multivariate, are illustrated
with the case study of fall daily heavy-rainfall in France from Chapter 1. This chapter aims to point
at the drawbacks of classical approaches while applied to our data set. An expert reader can skip
the introductory theory and go directly to Section A.4, where we discuss these limitations.

A.2 Univariate extremes

A.2.1 Regular variation and extreme values

In their work, Fisher and Tippett (1928) and Gnedenko (1943) derived the founding theorem
of extreme value theory. All introductory books of the field include its statement, cf. Theorem
3.2.3 in [59], Theorem 2.1 in [12], Theorem 3.1. in [34], Theorem 1.1.3 in [80] or Proposition 0.3 in
[140]. Mainly, it characterizes the family of distributions in the maximum domain of attraction of a
distribution. Three types of domains are possible: Weibull, Gumbel, or Fréchet. Our focus is on the
last one detailing heavy-tailed distributions. Typically, we aim to study distributions with a survival
function decaying faster than at an exponential rate. We also want to consider distributions with
an infinite variance such that extremes drive the large deviations from the median. We describe
heavy-taildness in terms of regularly varying distributions following Karamata’s theory in [100].

Definition A.2.1. A function f : R → R is regularly varying of index α > 0 if for all t > 0,
limx→+∞ f(tx)/f(x) = t−α.

Definition A.2.2. A function ` : R→ R is slowly varying if for all t > 0, limx→+∞ `(tx)/`(x) = 1.

Definition A.2.3. A distribution function F : R → [0, 1] is regularly varying with (tail)-index
α > 0 if and only if its survival function: x 7→ 1− F (x) is regularly varying of index α.

Naturally, from the definitions above, every regularly varying function of index α > 0 can be
written as f(x) = x−α`(x) for a slowly varying function `. The Table A.1 below summarizes classical
examples of regularly varying distributions and their slowly varying term, e.g. Pareto distribution,
the Fréchet distribution, the Burr distribution, the log-gamma; see Table 2.1. in [12]. Further
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examples of regularly varying distributions are the student distribution, the Lévy distribution and
the Cauchy distribution.

Remark A.2.4. The index of regular variation plays a key role in determining the heaviness of the
tail. For example, if X a non-negative random variable with regularly varying distribution of index
α > 0, then for p > α, E[Xp] = +∞, and for p < α, E[Xp] < +∞; cf. [13].

Remark A.2.5. Concerning closure properties, let X1, X2, be non-negative independent regularly
varying of index α > 0, and let Y be non-negative such that E[Y α+ε] < +∞,for ε > 0, independent
of X1, X2. Then, X1 +X2, X1X2, and Y X2 are regularly varying of index α > 0. The last result is
known as Breiman’s lemma. We refer to [117, 32, 19].

Remark A.2.6. It is common to refer to heavy-tailed distributions only in the case of infinite
variance, i.e., α < 2. We study the whole family of laws verifying Definition A.2.3 with α > 0.

F (x) 1− F (x) `(x) (tail)-index

Pareto x−α, 1 α > 0
α > 0 x > 1

Fréchet 1− exp{−x−α}, 1− x−α

2 + o(x−α) α > 0
α > 0 x > 0

Burr
( η
η+xτ

)λ, ( η
1+(η/xτ )

)λ
λτ > 0

η, τ, λ > 0 x > 0

log Γ
∫∞
x

αk

Γ(k)y
−α−1(log y)k−1dy, αk−1

Γ(k) (log x)k−1(1 + k−1
α log x + o( 1

log x)) α > 0

α, k > 0 x > 1

Table A.1: Regularly varying distribution F with (tail)-index α > 0 satisfying 1−F (x) = x−α`(x).

A.2.2 The maxima and exceedances modeling theorems

We state below the Fisher-Tippett-Gnedenko theorem for maxima modeling.

Theorem A.2.7. (Fisher–Tippett–Gnedenko Theorem) Let (Xt) be an iid sequence of random vari-
ables. Assume there exists renormalizing constants an > 0, bn ∈ R and a non-degenerate distribution
G such that

lim
n→+∞

P( max
t=1,...,n

Xt ≤ x an + bn) = G(x), x ∈ R, (A.2.1)

then G belongs to the family of generalized extreme value distributions and

G(x) = Gγ(x;µ, σ) = exp{−(1 + γ (x−µ)
σ )

−1/γ
+ }, x ∈ R. (A.2.2)

for µ ∈ R, σ > 0 and γ ∈ R such as for γ = 0 one shall read the above expression as the limit as γ
approaches zero.
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As we mentioned, regularly varying distributions determine the maximum Fréchet-type domain
of attraction, i.e., the case γ > 0 in (A.2.2) in the Fishet-Tippett-Gnedenko theorem. We rephrase
Proposition 1.11 in [140] containing the original result from Gnedenko (1943).

Theorem A.2.8. The condition in (A.2.1) holds for G = Gγ, where γ > 0 is the tail parameter,
if and only if the survival function x 7→ P(X1 > x) is regularly varying of index 1/γ and one can
choose bn = 0 and (an) verifying nP(X1 > an)→ 1 as n→ +∞.

Theorem A.2.7 is the core for many statistical approaches to model the tail of the distribution
from observed values. Another approach is built on exceedances type methods justified by the next
theorem below. It relates the maximum domain of attraction of the limit in (A.2.1) with the family
of generalized Pareto distributions. They key idea is to notice that if X is a random variable with
distribution F and

Fn(anx+ bn) −→ G(x), x ∈ R, (A.2.3)

at the continuity points x of a non-degenerate distribution G, for constants an > 0, bn ∈ R, then
the relation (A.2.3) holds if and only if

n(1− F (anx+ bn))→ − logG(x), x ∈ R, (A.2.4)

at each continuity point x of G for which 0 < G(x) < 1. This is Theorem 1.1.2 in [80]. We rephrase
below Theorem 3.4.5 in [59] or Theorem 1.1.6 in [80]; see also [78].

We state below the Pickands-Balkema-de Haan Theorem for exceedances modeling.

Theorem A.2.9. (Pickands-Balkema-de Haan Theorem) The condition in (A.2.1) holds with G =

Gγ, for γ ∈ R, if and only if there exists a measurable function a : R>0 → R>0 such that

lim
u↑u∗

P(X1 − u ≤ x a(u) | X1 > u) = H(x) = 1− (1 + γx/σ)
−1/γ
+ x ∈ R, (A.2.5)

where u∗ := sup{u : P(X1 ≤ u) < 1} and H belongs to the family of generalized Pareto distributions

H(x) = Hγ(x;µ, σ) = 1− (1 + γ (x−µ)+
σ )

−1/γ
+ , (A.2.6)

the case γ = 0 is the limit as γ approaches zero in (A.2.6).

A.2.3 Inference beyond observed values

The Fisher-Tippett-Gnedenko and Pickands-Balkema-de Haan theorems gather the foundation
of most statistical univariate practices in extreme value analysis to extrapolate the tail distribution
from observations. They lead to the block maxima and peaks over threshold approaches, respec-
tively. Classical interpretations of these methods for stationary univariate time-dependent scenario
lean on the extremal index modeling approach introduced in the paper [109] and the book [110].
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Statistical implementation is discussed in Chapter 5 [34]. We are often interested in fixed quantities
from the tail model like an extreme quantile outside the range of observations. In the hydrology
community, we want to answer in 50-years, which rainfall record will we reach? This value is called
the 50-years return level. Let us investigate how to implement classical approaches to compute
return levels. We choose the Hyeres weather station in the South of France; see Section 1.2 for
illustrating high quantiles statistical inference and uncertainties assessment.

Block maxima method

The block maxima approach follows the 1-5 steps:

1. Identify disjoint blocks,
2. keep only the largest record from each block as in Figure A.1 (in black),
3. fit a generalized extreme value distribution Gγ as in A.2.2,
4. compute the extremal index θ satisfying

(P (X1 ≤ xan))n θ → Gγ(x), nP(X1 > an)→ 1, n→∞. (A.2.7)

5. Extrapolate high quantiles and confidence intervals from (A.2.7).

We can evidence in Figure A.1 the impact from time dependence of extremes in the implementation
of the block maxima method. Heavy storms that propagate for several days lead to high levels
recorded on consecutive days, i.e., clusters of numerous high records in short periods. Then, the
block maxima method tends to discard large values, as can be seen in Figure A.1, where several
exceedances of a large order statistic are omitted and instead various lower levels are kept. In this
manner, we interpret equation (A.2.7) as a bias correction. We can also read the extremal index in
(A.2.7) as a measure of the clustering in time phenomenon.

Peaks over threshold method

The peaks over threshold approach follows the 1-5 steps:

1. Identify the exceedances amounts as in Figure A.2 (in black)
2. Identify clusters of numerous exceedances,
3. keep only one record from each cluster and compute its exceeded amount,
4. fit generalized Pareto distribution: Hγ as in (A.2.6),
5. extrapolate high quantiles and confidence intervals.

For the exceedances approach, Figure A.2 illustrates again the clustering phenomena we evoked.
Exceedances happen as short periods with various heavy rainfall levels. In this setting, keeping
all exceedances as in the iid case, lead to erroneous confidence intervals since observations due to
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Figure A.1: Time series of fall daily rainfall measures from one weather station in the South of
France. In black observations kept from the block maxima method from blocks of length 20. The
dotted line the 95th order statistic of the sample.

intra-clustering dependence. For this reason, a common practice is to discard the information of all
except one record from each cluster in step 3. Detecting the clusters is already a difficult task, for
example, the work in [65] built the bridge between clustering detection and the extremal index as
defined in (A.2.7). Furthermore, once we achieve accurate cluster identification, there is still the
complicated question of which record should we keep from each cluster? Many practical studies keep
the peak cluster observation; cf. [34]. However, this strategy is only justifies when the extremal
index equals one and yields biased estimates otherwise; cf. [60, 63].
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Figure A.2: Time series of fall daily rainfall measures from one weather station in the South of
France. In black exceeded amounts kept from the peaks over threshold method. The dotted line
the 95th order statistic of the sample.
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A.2.4 Moderate levels and tail inference

Extrapolation beyond the observed values is challenging and requires a rigorous theoretical
modeling. We can also be interested in intermediate values of the tail distribution. To set an
example, notice that implementation of the exceedances method starts with the choice of a high
empirical quantile. This random choice brings new uncertainties that we can assess by modeling
moderate quantiles. Another quantity we can infer from moderate values is the (tail)-index α > 0. It
plays a crucial role in weighting the tail’s heaviness and determines the return levels’ magnitude. We
can estimate it using the block maxima, or exceedances maximum-likelihood fit since it links to the
tail parameter inhere; see Theorem A.2.8. We call this maximum-likelihood estimator. Though, this
needs simultaneous estimation of the tail and shape parameter which can convey practical issues.
Another approach is Hill-based estimation from the original work in [85]. This section will formulate
the classical results on moderate values inference and Hill estimation of the (tail)-parameter.

We start with a brief heuristic for the iid setting. We consider observations (Xt)t=1,...,n identically
distributed as X1, such that X1 has regularly varying distribution F of index α > 0. We consider
the quantile function a(·) : R→ R defined by

a(x) = F←(1− x−1), (A.2.8)

and we consider the order statistics of the sample to be defined as

X(1) ≥ X(2) ≥ · · · ≥ X(n). (A.2.9)

Typically, for k ∈ N, X(k)/a(n/k)
P−→ 0; as n → +∞. Letting k = kn such that n/kn → +∞,

kn → +∞, as n → +∞ allows to estimate moderate quantiles. Asymptotic normality is shown in
Theorem 2.2.1 below. In this setting, refering to Theorem A.2.8, we define the Hill estimator of the
tail parameter γ = 1/α as

γ̂(k) =
1

k

k∑
t=1

logX(t) − logX(k−1). (A.2.10)

We detail below an heuristic argument justifying the Hill estimator. Recall for regularly varying
F ,

1− F (tx)

1− F (x)
→ t−α, x→ +∞.

Moreover, the tail quantile function a(·) in (A.2.8) satisfies a(x)→ +∞ and x(1− F (a(x))→ 1 as
x→ +∞. Then, for t > 0,(

1− 1

t

)
≈ 1− F ( a(n/t) )

1− F ( a(n/(t− 1)) )
≈
( a(n/t)

a(n/(t− 1))

)−α
, n→ +∞.
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Then, applying logarithm at both sides of the equation and replacing a(n/t) by its estimate X(t)

yields

− log(1− t−1)

α
≈ logX(t) − logX(t−1), n→ +∞.

Moreover, −t log(1 − t−1) → 1 as t → +∞. Then, consider a sequence (kn) such that kn → +∞,
n/kn → +∞ as n→ +∞. In this case, taking the average over the k largest order statistics leads

γ =
1

α
≈ 1

k

k∑
t=1

t logX(t) − t logX(t−1)

=
1

k

k∑
t=1

logX(t) − logX(k−1), n→ +∞.

with the convention that for t = 1 the summand is simply logX(1). where the last equality holds
by developing the telescopic sums.

To sum up, sufficient conditions for granting the approximations above in the iid case can be
found in Theorem 2.4.1. and Theorem 3.2.5 [80] that we reformulate below.

Theorem A.2.10. Let (Xt)t=1,...,n be iid observations with regularly varying distribution F . Let
a(·) be as in (A.2.8). Assume F satisfies the second-order condition for ρ ≤ 0: there exists a
nonnegative function A(·) such that limx→+∞A(x) = 0 and for t > 0,

lim
x→+∞

a(tx)
a(t) − t

1/α

A(x)
= t1/α

tρ − 1

ρ
.

Consider (kn), such that for k = kn, k → +∞, n/k → +∞,
√
kA(n/k)→ λ. Following the notation

in (A.2.9) and (A.2.10), then

√
k
( X(k)

a(n/k)
− 1
) d−→ N

(
0, 1
)
, (A.2.11)

√
k ( γ̂(k)− γ )

d−→ N
(
λ(1− ρ)−1, γ2

)
, n→ +∞. (A.2.12)

for λ ∈ (0,+∞).

Consistency properties of the quantile and tail index estimators above for stationary, possibly
dependent, observation were studied in [87, 141]. An optimal asymptotic normality result for
stationary observation is shown in [49], under mild mixing assumptions. Bias correction of the Hill
estimator is discussed in [11, 75, 83], and references therein.

A.3 Multivariate extremes

The precedent statistical techniques allow us to infer high quantiles from univariate time series.
However, our case study, and further examples from spatial data, come in a multivariate format. We
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aim to study the extremes from the network of rainfall measures from weather stations in France.
In the context of natural/climate events, we define risk as a compound, interconnected, interacting,
and cascading event [69, 137]. For example, in hydrology, the cause of river flooding is often due
to high rainfall amounts recorded simultaneously at multiple close-by stations from the national
network [37]. Similarly extremal sea levels, temperatures and wind speeds have been studied from
a spatial perspective; see [35]. Also from an economics point of view, the price returns of a basket
of multiple assets need to avoid recording multiple extremes in periods of high volatility [163].
Moreover, embedding univariate time series in a multivariate framework might also help assess the
time dependencies

Multivariate extreme value theory undertakes two main challenges. First, multivariate extreme
value distributions no longer belong to a parametric family Second, but closely related, depending
on the application, we can learn the extremal multivariate aspect from different perspectives. For
example, we can study the vector of component-wise maxima or aggregate all the d-coordinates
and study its univariate tail distribution. These both lead to possible definitions of spatial extreme
episodes. Indeed, the family of d-dimensional extreme events has to be broader than the interval-
type sets, typical of univariate problems. It should be flexible if we are interested in extremes where
at least one coordinate is large or extremes where all coordinates are large or extremes issue from
aggregating with sum-type functionals the coordinates, or further Rd-functionals.

From the univariate setting, we saw regular variation is well-suited or studying heavy-tails
in Theorem A.2.8. Therefore, a good program for a multivariate extension is to define regular
variation of vectors. This approach was pursued in [140, 143] who built upon the generalization of
regular variation using the notion of vague converges of measures. Instead, we state an equivalent
version in terms weak convergence of probability measures using polar decomposition arguments
[84, 152]. It highlights the random aspects of spatial extremes, establishes the main features of
regular variation, and allows to extends the Fisher-Tippett-Gnedenko. We state it below and then
explain the advantages of characterizing heavy-tailed extremes through this definition in detail
below.

In terms of notation, we write variables taking values in Rd in bold, and we endow the space Rd

with a norm | · |. We focus on `p(Rd) norms: | · | : x 7→ (|x1|p + |x2|p + · · · + |xd|p)1/p, for p > 1

where p =∞ refers to the supremum norm. Operations in Rd like x+y, xy, x ≤ y or x ≥ y, (x)+,
are taken component-wise unless stated otherwise. In particular, we write

P( max
t=1,...,n

Xt ≤ x) = P
(

max
t=1,...,n

Xt,1 ≤ x1, . . . , max
t=1,...,n

Xt,d ≤ xd
)
.

If X is a random d-dimensional vector with distribution F , then the coordinate Xj is distributed
as Fj , j = 1, . . . , d. We also write g←(·) for the left inverse of a non decreasing function g : R→ R.
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A.3.1 Multivariate regular variation

Definition A.3.1. An Rd-valued random variable X is regularly varying of (tail)-index α > 0 if
there exists a random variable Θ satisfying |Θ| = 1 a.s. such that

P(|X| > tx, X/|X| ∈ · | |X| > x)
w−→ t−α P(Θ ∈ ·), x→ +∞. (A.3.13)

The (tail)-index α, and the random variable Θ are informative of the magnitude and spatial
distribution of extremes, respectively. Decomposing the extreme event into its magnitude and the
spatial features yields to asymptotically independent component. The measure Θ is known as the
spectral tail measure and takes values in the d-dimensional sphere Sd−1 := {x ∈ Rd : |x| = 1}.

Remark A.3.2. The closure of sums also holds for multivariate regular variation as in the uni-
variate case; see Remark A.2.5. For the products closure, we must be careful. A Breiman’s lemma
extension is given in Proposition 5.1. in [6].

Remark A.3.3. Concerning a Cramèr-Wold type devise for the weak limit in (A.3.13), regular
variation with index α > 0 of u>X, for all u ∈ Rd is equivalent to (A.3.13) only under certain
conditions. For example, if α is a positive non-integer or if X ∈ [0,+∞)d and α is an odd integer;
cf. Theorem 1.1. in [7].

Any random variable Θ in the d-dimensional sphere Sd−1 = {x ∈ Rd : |x| = 1} is a spectral tail
measure, but notice that its support may not be the whole sphere. Two opposite behaviors capture
much attention due to their interpretation. We present them in the following examples.

Example A.3.4. (Full asymptotic independence) Let Θ be a random variable in Sd−1 defined by
P(Θ ∈ ·) =

∑d
i=1 piδei , where (pi) ∈ (0, 1)d satisfy

∑d
i=1 pi = 1, δ· is the Dirac measure, and ei is

the vector in Rd taking the value 1 at the i-th coordinate and zero elsewhere.

Example A.3.5. (Full asymptotic dependence) Let Θ be a random variable in Sd−1 satisfying
P(Θj > 0, j = 1, . . . , d) = 1.

Briefly speaking, asymptotic independence models vectors where two coordinates can not be
large simultaneously, whereas all coordinates must be large for full asymptotic dependence. Defi-
nition A.3.1 characterizes the extremal properties of a regularly varying vector X after the polar
decomposition X 7→ (|X|,X/|X|). Further, we recover the extremal behavior of X over a large
family of sets following Proposition 3.1. in [152].

Theorem A.3.6. An Rd−valued random variable X is regularly varying with (tail)-index α > 0 if
and only if there exists a Borel measure µ in Rd and a regularly varying function V with (tail)-index
α > 0 such that

1
V (x)P(x−1X ∈ A)→ µ(A), x→ +∞. (A.3.14)
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where A ⊂ Rd \ {0} and 0 6∈ A for continuity sets A. Moreover, we can take V (x) := P(|X| > x)

yielding

µ(·) :=
∫∞

0 P(yΘ ∈ ·)d(−y−α), (A.3.15)

such that Θ is the spectral tail measure satisfying |Θ| = 1 a.s.

Remark A.3.7. The equivalent definition of multivariate regular variation in (A.3.14) appeals to the
notion of vague convergence in [143], andM0 convergence in [89]. Both definitions coincide in (Rd, |·
|), butM0 convergence has the advantage that it extends to further metric spaces. This generalization
allows to study extremes in the space of continuous functions in [0, 1] with the supremum norm, or
càdlàg function in [0, 1] with Skorokhod J1-topology, already considered in [114].

The limit Borel measure appearing in the limit form of equation (A.3.14) details the extremal
properties of a regularly varying vector X. It is known as the exponent measure and satisfies the
homogeneity relation µ(t·) = t−αµ(·). Regular variation again characterizes the maximum domain
of attraction of multivariate heavy-tailed distributions. We review this result in the theorem below;
see Proposition 5.11 in Resnick [140].

Theorem A.3.8. An Rd-valued random variable X is regularly varying if and only if X has margins
in the Fréchet maximum domain of attraction and there exists a distribution G satisfying

P( max
t=1,...,n

Xt ≤ anx + bn) → G(x), n→ +∞, (A.3.16)

for a positive and real-valued sequences (an), (bn). respectively, such that G has non-degenerate
margins. In this case, G(·) = exp{−µ(·)}, where the measure µ is the exponent measure in equation
(A.3.15).

From the discussion above, regular variation is well suited for studying extremes from heavy-
tailed distributions with the same tail index α > 9. The expression in (A.3.13) highlights the
important role of α and Θ for modeling rare events. In particular, any random variable Θ taking
values in the d-dimensional sphere yields to an extreme value distribution G as in (A.3.16). Para-
metric models were studied for bivariate and then multivariate cases in [70, 134, 158], and then
[77, 81, 165, 35]. The following are classical examples.

Example A.3.9. (Logistic model)

G(x) := exp
{
− (
∑

i=1,··· ,d x
−1/τ
i )τ

}
, τ ∈ [0, 1].

Example A.3.10. (Asymmetric logistic model)

G(x) := exp
{
−
∑

I⊆{1,··· ,d}(
∑

i∈I(
θi,I
xi

)1/τI )τI
}
,

where τI ∈ [0, 1], θi,I ≥ 0 and
∑

i∈I θi,I = 1 for all I ⊆ {1, · · · , d}.
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Consider now a random vector X in Rd with marginals in any domain of attraction. We define
multivariate extreme value distributions as the limits G with non-degenarate margins satisfying

P( max
t=1,...,n

Xt ≤ anx + bn) −→ G(x), n→ +∞, x ∈ Rd, (A.3.17)

for (an) ∈ Rd>0, (bn) ∈ Rd. Notice this is a broader family than the limits from equation A.3.16.
Also, G has multivariate extreme value margins which are thus continuous. Then, as in the univari-
ate setting, for i.i.i. observations (Xt), the relation (A.3.17) holds if and only if

n{1− F (anx + bn)} → − logG(x), n→ +∞, x ∈ Rd, (A.3.18)

for any x such that 0 < G(x) < 1. We refer the details to ([80], chapter 6). Then a natural way of
defining multivariate generalized Pareto distributions is by conditioning on at least one coordinate
being large. This limit of component-wise exceeded amounts was studied in [149, 12]. It generalizes
the exceedances approach from the Pickands-Bakema-De Haan theorem in A.2.9, as stated in the
next theorem.

Theorem A.3.11. Let X be a Rd-valued random vector with distribution F. The condition (A.3.17)
holds if and only if there exists a d-dimensional random vector W such that

P(a−1
n (X− bn)+ ∈ · |maxj=1,··· ,d|Xj | > bn)

d−→ P((W)+ ∈ · ), n→ +∞ (A.3.19)

where (an) and (bn) are chosen to ensure that 0 < Gj(0) < 1, j = 1, . . . , d. and H belongs to the
family of multivariate generalized Pareto distributions. Moreover,

P((W)+ ≤ x) = 1
− logG(0) log G(x)

G(0) , x ≥ 0.

We confer further details of the exceedances approach to [147, 148, 105], where properties of
this family of distribution and inference procedures are discussed.

The multivariate extreme value and the generalized Pareto distributions are popular since they
completely characterize the three maximum domains of attraction: Weibull, Gumbel, and Fréchet.
In comparison, regular variation focuses on modeling the heavy-tailed phenomena. However, for
lighter tails, or coordinates with different (tail)-index, it is common to transform margins first. For
example, the rank transform: Xj 7→ 1/(1−Fj(Xj)) yields to a vector with unitary Fréchet margins
which allows to recover the regularly varying framework; see [12]. This practice is justified by the
proposition below.

Proposition A.3.12. Any multivariate extreme value distribution G defined from equation (A.3.17)
can be written as

G := G∗(ϕ1(x1), · · · , ϕd(xd))

where G∗ is a multivariate extreme value distribution with unitary Fréchet margins and ϕj(·) :=

(1/(1−G∗j ))←(·).
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For a proof see Proposition 5.10 in [140]. To conclude, in the multivariate setting, learning the
marginal features and the spatial structure suffices to describe the maximum domain of attraction.
The spatial aspect of extremes is carried by the spectral tail measure of the transformed vector to
unitary Fréchet. We recover from Proposition A.3.12 the important role played by the spectral tail
measure defined in (A.3.13). Further on, we consider uniquely heavy-tailed models.

Remark A.3.13. Another way of characterizing extreme value distributions is through the notion
of max-stability. We recall a distribution G is max-stable if for all n ∈ N, there exists constants in
Rd an > 0,bn ∈ R satisfying

P( max
t=1,...,n

Yt ≤ x) = P(Y1 ≤ anx + bn),

where (Yt) is an i.i.d. sequence distributed as G. The limit distributions from (A.3.16) are max-
stable. In the univariate case, max-stable distribution coincide with extreme value distributions; see
[140]. In the multivariate case, extreme value distributions coincide with max-stable distributions
with non-degenerate marginals. This result was reviewed in Proposition 5.9 in Resnick [140].

A.3.2 Statistical methods for multivariate extremes

Let (Xt)t=1,...,n be observations in Rd identically distributed. Two challenges arise for learning
the extremal properties ofX1. First, inferring its marginal aspects, and second, inferring its extremal
spatial features. The first task is typically assessed using the methods from the univariate chapter.
For the second one, we can assume X1 is regularly varying with (tail)-index α > 0. Indeed, this
assumption holds if we have transformed our margins first, for example to unitary Fréchet with the
rank transformation. It is also a reasonable assumption if all coordinates reach high levels similarly,
at the same magnitude, and we can assume the heavy phenomenon has the same driver. Then we
can model tail margins to be equivalent up to a constant.

For our case study, high rainfall measures have the same magnitude and reach high levels at a
similar rate whenever the weather stations are close. This is well illustrated in Figure A.3. Also,
climate scientists agree that precipitations behave like a heavy-tailed phenomenon [102]. Indeed, we
can think the meteorological event impacting close locations has the same source but is manifested at
different time lags and locations as it travels its course. This justifies modeling daily rainfall amounts
from each region as a multivariate regularly varying random vector given by X1 = (X1,1, X1,2, X1,3).
The main challenges of multivariate extremes then resumes to inferring features of the spectral tail
measure Θ, and the tail index α > 0. In terms of notation, we write the d-dimensional observation
at time t as Xt = (Xt,1, . . . , Xt,d).

As mentioned previously, the domain of the spectral tail measure Θ might not be the whole
sphere. Inspecting its domain can help reduce the dimension of the problem at an early stage. One
way to do so is partitioning the unit sphere Sd−1 into its faces

Sd−1
{I} = {x ∈ Sd−1 : xi > 0 if i ∈ I, xi = 0, if i 6∈ I} (A.3.20)
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(a) Northwest

(b) South

(c) Northeast

Figure A.3: Scatterplot of fall daily rainfall records from regions in France with Oceanic, Mediter-
ranean and Continental weather in (a), (b), (c), respectively. We fix the 95th-order statistic of the
norm sample at each region and then color points to distinguish records. Measures whose supremum
norm does not exceed this threshold value are in blue. Records exceeding the threshold at one, two,
and three coordinates are colored green, pink, and black, respectively.

.
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with I ⊂ {1, · · · , d}. As in the examples A.3.4 and A.3.5, this partitioning of the sphere aims to
describe the coordinates of a regularly varying vector X that are large simultaneously. Typically,
this restricts the problem to moderate dimensions. We want to recover the sparsity structure
intrinsic to the measure Θ, which only puts mass in specific faces. We argue that this is crucial
for both parametric and non-parametric modeling. It helps reduce the burden of dimensionality for
non-parametric models and, for classical parametric models, it justifies assuming the spectral tail
measure is fully asymptotically dependent. It suffices to restrict the analysis to the joint distribution
over faces with positive probability. Both Example A.3.9 and Example A.3.10 model full asymptotic
dependence.

For a regularly varying random vector X, the projection X/|X| behaves asymptotically as Θ as
|X| reaches larger values; see (A.3.1). We use this heuristic to obtain an empirical approximation
from a sample of Θ. For our precipitation data-set, the empirical sample of the spectral measure
for exceedances over the 95-th quantile are plotted in Figure A.4. We can see a good proportion of
points, in particular black points, lying close to S2

1,2,3 := {(1, 1, 1)}; and also a significant amount
of points lying around Sd1,2 ∪ Sd1,3 ∪ Sd2,3 := {(x, y, z) ∈ S2 : (x, y) = 1 or (x, z) = 1 or (y, z) = 1},
for the majority pink. The previous sets are the faces defined in (A.3.20). We conclude that in our
tri-variate analysis there is no evidence of extremal asymptotic independencies.

Measuring extremal spatial dependence

The takeaway message is that we can look at statistics of the spectral measure Θ to study
the behavior of spatial extremes. Non-parametric estimation based on the subsample consisting of
X(1)/|X(1)|, · · · ,X(k)/|X(k)|, is discussed in [143], where (kn) satisfies, for k = kn, k → +∞, n/k →
+∞. Non-parametric estimation is discussed in [35, 162, 36, 111]. Further, summary statistics
of extremal spatial dependence include the Pickands dependence function, the index of extremal
dependence, the upper tail dependent coefficients are examples, which we can all write in terms of
Θ. We refer to [71] for further reference on measures of spatial dependence. We only detail on the
upper tail dependent coefficient.

Definition A.3.14. (Tail dependent coefficient) Let (Xt) be a regularly varying time series in
(Rd, | · |) with (tail)-index α > 0, and spectral measure Θ; see (A.3.13). We define the upper tail
dependent coefficient by

χi,j := lim
x→+∞

P(Xi > x | Xj > x) =
E[(Θi)

α
+ ∧ (Θj)

α
+]

E[(Θj)α+]
, i, j = 1, . . . , d.

In the bivariate case, the case χ1,2 = 0 is equivalent to full asymptotic independence of extremes
and χ1,2 = 1 is asymptotic dependence of extremes.

Example A.3.15. For the logistic model with parameter τ ∈ [0, 1], as in Example A.3.9, χi,j =

2− 2τ .
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(a) Northwest

(b) South

(c) Northeast

Figure A.4: Projection of fall daily rainfall exceedances of the 95th-order statistic to the supre-
mum sphere: X 7→ X/|X|. Panels correspond to Oceanic, Mediterranean and Continental weather
in France in (a), (b), (c), respectively. Records exceeding the threshold at one, two, and three
coordinates are colored green, pink, and black, respectively, as in Figure A.3.
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Brest Lanveoc Quimper Bormes Le Luc Hyeres Nancy Metz Roville
Brest - 0.73 0.29 0.01 0.01 0.01 0.11 0.09 0.10

Lanveoc 0.39 - 0.12 0.02 0.02 0.01 0.05 0.02 0.07
Quimper 0.40 0.33 - 0.02 0.01 0.01 0.12 0.13 0.07
Bormes 0.04 0.12 0.08 - 0.33 0.38 0.00 0.00 0.00
Le Luc 0.03 0.11 0.03 0.29 - 0.55 0.06 0.06 0.04
Hyeres 0.02 0.03 0.02 0.21 0.36 - 0.04 0.00 0.03
Nancy 0.04 0.03 0.04 0.00 0.01 0.01 - 0.38 0.32
Metz 0.04 0.01 0.05 0.00 0.01 0.00 0.46 - 0.20
Roville 0.07 0.07 0.04 0.00 0.01 0.01 0.62 0.34 -

Table A.2: Table of estimates of the tail dependence coefficients χi,j for fall daily rainfall between
stations in France.

A.4 Limitations of classical approaches

Bivariate and multivariate extensions of extreme value theory in the i.i.d. case was undertaken
initially in the work of [70, 134, 158], and then [81]. A context with both multivariate and time-
dependent extreme assessment is less common. Most solutions so far presented address either time
or space dependence. Also, they seldom consider a point of view outside the main heuristic of
maxima of blocks and exceedances techniques which are the most common between practitioner for
high quantile inference which refers to (Quest. 4).

To sum up, the extremal dependence in time has been analyzed previously mainly from the
extremal index point of view. Since the original work in [109, 110], the current leading branches of
the domain concern estimation of the extremal index, from a practical point of view, and formalizing
the notion of cluster of exceedances, from a theoretical point of view. We refer to the recent work
of [65, 155, 159, 150, 129, 16, 21, 25] as for inference of the extremal index. For the mathematical
theory of cluster of exceedances a list of recent publications includes [40, 10, 9, 138, 28]. In this
manner, the cluster of exceedances captures short periods with consecutive large values and is one
classical approach addressing (Quest 1.). In the same line, inference of the extremal index tackles
(Quest 3.) since it has interpretation as a summary statistic of the clustering of heavy records
phenomenon. Nevertheless, estimating the extremal index still demonstrates to be a difficult task.
To overcome these challenges we further discuss large deviations of heavy-tailed time series in
Chapter B. Concerning (Quest 2.), typically, to select extreme observations from the sample, we
estimate moderate thresholds using order statistics. However, for dependent observations, this
strategy brings new uncertainties into play, which are already difficult to track in the i.i.d. setting.
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Appendix B: Large deviations of heavy-tailed time series

B.1 Outline of Chapter B

In this chapter we drop the independence assumption in time and space. We consider stationary
time series (Xt), taking values in (Rd, | · |), with multivariate regularly varying finite-dimensional
cuts. We study the extremal behavior of (Xt) focusing on sum-type functionals. In Section B.2 we
motivate the study of sums large fluctuations and present the classical theory in the i.i.d. setting
of central limit theory and large deviation principles for heavy-tailed observations. We fix notation
in Section B.3. In Section B.4 we provide assumptions for extending classical results to stationary
heavy-tailed time series, following [40]. Regularly varying time series are defined in Section B.5.
Then we review central limit theory for stationary regularly varying time series observations in
Section B.6. To state the main results we introduce the clusters of (exceedances) with values in
`∞, implicitly introduced in [40]. In Section B.7 we discuss large deviation principles for stationary
regularly varying time series and motivate our definition of cluster processes in `p, for p < +∞.
Cluster inference is discussed in Section B.8. In Section B.9 we review two stationary regularly
varying time series models.

B.2 Motivation: fluctuations of sums

B.2.1 Central limit theory for i.i.d. observations

So far, Chapter A on classical extreme value theory studies maxima and exceedances approaches.
In this setting, regular variation proved to be a valuable and sufficient notion to survey these
operations. Regular variation is also key for studying sum-type functionals. For instance, it appears
naturally while looking at the sums fluctuations of i.i.d. observations. We recall the central limit
theorem for i.i.d. random variables (Xt) with finite variance σ2 < +∞ and mean µ < +∞. It states
that (

∑n
t=1Xt − µn)/

√
σ2 n

d−→ ξ, and ξ is standard normal distributed. This theorem extends to
i.i.d. random variable with non-finite second moment, and regular variation also appears naturally
as we show next. We start by stating Theorem 2.2.5 in [59].

Theorem B.2.1. (Central Limit Theorem) Let (Xt) be an i.i.d. sequence of univariate random
variables. Assume there exists renormalizing constants an > 0, bn ∈ R, and a non-degenerate
distribution L such that

lim
n→+∞

P(
∑n

t=1Xt ≤ xan + bn) = L(x), x ∈ R, (B.2.1)
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then L = Lα belongs to the parametric family of stable distributions, determined by its log-characteristic
function, such that, if ξα is distributed as Lα, then for u ∈ R

log E[eiu ξα ] =

−σα|u|α(1− iβ sign(u) tan πα
2 ) + iµ u if α 6= 1,

−σ|u|(1− iβ sign(u) 2
π log |u|) + iµ u if α = 1,

(B.2.2)

where α ∈ (0, 2] is the stable tail parameter, σ ∈ [0,+∞) is a scale parameter, β ∈ [−1, 1] is a
skweness parameter, and µ ∈ R is a location parameter.

Theorem B.2.1 can be seen as a version of the Fisher-Tippett-Gnedenko Theorem in A.2.7
tailored for sums. Characterizing the limit distribution of partial sums is a fundamental result of
probability theory, and is discussed in classical textbooks as [3, 13, 59, 66], and references therein.
Moreover, as in the Fisher-Tippett-Gnedenko theorem, the limit (B.2.1) is in straight correspondence
with the regular variation property of the tails. To see this we state below Corollary 2.2.17 in [59]
below.

Proposition B.2.2. Let (Xt) be an i.i.d. sequence of univariate random variables. The rela-
tion (B.2.1) holds for Lα, the α-stable distribution with α ∈ (0, 2], if and only if

• α = 2 and E[(X1)2] <∞,

• α ∈ (0, 2], E[(X1)2] = +∞, and there exists non-negative constants p−, p+, satisfying p− +

p+ = 1, such that the following tail-balance condition holds

lim
x→+∞

P(X1 < −x) ∼ p− x−α `(x), lim
x→+∞

P(X1 > x) ∼ p+ x
−α `(x), (B.2.3)

where x 7→ `(x) is a slowly varying function. We call α > 0 the (tail)-index of (Xt).

Actually, for regularly varying random variables, there exists a tight link between the maxima
and sum fluctuations given by the subexponential property. More precisely, we reformulate below
a direct corollary from Lemma 1.3.1. in [59].

Proposition B.2.3. Let (Xt) be a sequence of univariate i.i.d. random variables. If X1 is regularly
varying, then it verifies the subexponential property:

lim
x→+∞

P(
∑n

t=1Xt > x)

P(maxt=1,...,nXt > x)
= lim

x→+∞

P(
∑n

t=1Xt > x)

nP(X1 > x)
= 1. (B.2.4)

The family of stable distributions is characterized by (B.2.2) and also by the limiting property
in (B.2.1). It also coincides with the distribution family satisfying the sum-stable property:

a−1
n (
∑n

t=1Xt − bn)
d
= ξ, (B.2.5)

for an i.i.d. univariate sequence (Xt), a random variable ξ, and sequences an > 0, bn ∈ R. Examples
of stable distributions are the Gaussian distribution with α = 2, the Cauchy distribution with α = 1,
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and β = 0, and the Lévy distribution with α = 1/2 and β = 1. In this cases, analytical expressions
exist for their density functions; see Chapter 1 in [130]. However, in many cases analytical expres-
sions does not exist and only asymptotic expansions are available; see Chapter 3 in [130]. Modeling
with stable distributions is common in financial applications to represent stock returns with infinite
variance [4, 116]. Similarly they are considered in signal process [128] and network traffic [142]. A
literature review of these applications is also given in Chapter 2 [130].

B.2.2 Large deviations for i.i.d. observations

Central limit theory as in Theorem 5.2.1 summarizes the convergence of sums towards its median.
Weaker results are also at hand. For example, the strong (weak) law of large numbers provides rates
for almost sure (probability) convergence or divergence of mean corrected sums assuming moment
conditions. Stronger results also exists refining the central limit theorem. For example, large
deviation principles focus on the distribution of mean corrected sums on extremal sets. The main
idea is to quantify the convergence rate of its tails by studying the large jumps from the median.
Cramér’s theory is standard for a tail approximation of finite variance observations. It can be found
in a handful of probability textbooks [17, 66]; see also [59, 119] for a review.

For heavier tails, we recall the main large deviation principles derived in A.V. and S.V. Nagaev
[125, 124]; and Cline and Hsing [33] see also [121].

Theorem B.2.4. Consider (Xt) to be univariate i.i.d. random variables satisfying the tail-balance
condition in (B.2.3) for p−, p+, and with (tail)-index α > 0. Then,

lim
n→+∞

sup
x≥xn

∣∣P(
∑n

t=1Xt − bn > x)

nP(|X| > x)
− p+

∣∣+
∣∣P(
∑n

t=1Xt − bn ≤ −x)

nP(|X| > x)
− p+

∣∣ = 0. (B.2.6)

such that nP(|X| > xn)→ 0 and

xn =


√
cn log n, if α ∈ (2,+∞),

n
1
α+κ if α ∈ (1, 2],

n
1
α+κ if α ∈ (0, 1],

, bn =


nE[X1] if α ∈ (2,+∞),

nE[X1] if α ∈ (1, 2),

0 if α ∈ (0, 1]

(B.2.7)

where c is a constant satisfying c > α− 2, and we can take any κ > 0.

Our motivation for introducing this classical theory here is twofold. First, it is an interesting
perspective to quantify risk, particularly risk due to the effect of aggregating observations. Ruin
type probabilities are an example of this [59]. We can use large deviation principles to assess the
threat of extreme events for regularly varying random variables with tail index α ∈ (0, 2), and the
central limit theorem appears as an alternative to the Fisher-Tippet-Gnedenko for modeling the
tails of a distribution. The main drawback from this approach, is the lack of analytical expressions
of all but few stable laws. Though, the recent improvement of numerical approximation and com-
puter’s power motivate us to look back at stable laws [4, 131]. Furthermore, the regular variation
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framework establishes a close link between sums and maxima while studying extremes due to the
subexponentiality property; see Proposition B.2.3, this suggests heavy-tails can also be modeled
through sum-type functionals.

B.3 Notation

In terms of notation, to include the temporal coordinates, we write vectors (xt)t=a,··· ,b = x[a,b]

for any a, b ∈ Z, and a ≤ b. For p ∈ (0,+∞], (xt) ∈ (Rd)Z, we define the p−modulus function
‖ · ‖p : (Rd)Z → [0,+∞] by ‖xt‖p := (

∑
t∈Z |xt|p)1/p, and we define the sequential space `p as

sequences with finite p-modulus, with the convention that p = ∞ refers to the supremum norm.
For p ∈ (0,+∞], the p-modulus induce a distance dp in `p. If p ∈ [1,+∞] the p-modulus defines a
norm, and (`p, dp) are separable Banach spaces. If p ∈ (0, 1), then (`p, dp) is still a separable metric
space.

Our focus will be on shift-invariant functionals on `p, which is the case of the p-modulus. We
define the quotient space ˜̀p = `p/ ∼ by (xt) ∼ (yt) is and only if there exists k ∈ Z such that
xt−k = yt, t ∈ Z. We define the metric space (˜̀p, d̃p) by

d̃p([xt], [yt]) = inf
k∈Z
{dp(xt−k,yt) : (xt) ∈ [xt], (yt) ∈ [yt]}, (B.3.8)

for [xt], [yt] ∈ ˜̀p. In what follows it will convenient to write elements [xt] in ˜̀p as (xt). We
sometimes need to embed vectors x[a,b] in the sequential space (Rd)Z/ ∼, we do this by assigning
zeros to undefined coordinates. Details on the shift-invariant spaces as in (B.3.8) are deferred to
[26, 9].

For matrices A ∈ Rd×d, we define the operator norm as |A|op := sup|x|=1 |Ax|. Truncation of
(xt) ∈ (Rd)Z at the level ε, for ε > 0, is written as (xεt ) = (xt11|xt|≤ε) , and (xtε) = (xt11|xt|>ε) .

B.4 Assumptions

In what follows, we consider stationary time series (Xt) with heavy-tailed finite-cuts allowing for
spatio-temporal dependencies. To extend the central limit theory and the large deviation principles
to a stationary setting, we follow the ideas in [40]. We introduce next an anti-clustering condition to
inhibit long-range dependence of extremes, a vanishing-small-values condition to control the sums
of moderate values, and a mixing condition for statistical purposes.

Assume there exists sequences (xn), (bn), such that, nP(|X0| > xn) → 0, P(|X0| > xbn) → 1,
n/bn → +∞, as n → +∞. In this chapter we consider the assumptions below, tailored for these
sequences.

• AC : Assume for all δ > 0,

lim
k→+∞

lim sup
n→+∞

P(‖X[k,n]‖∞ > δ xn | |X0| > δ xn) = 0. (B.4.9)
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• CS1 : Assume for all δ > 0, ε > 0, for α ∈ [1, 2),

lim
ε↓0

lim sup
n→+∞

P(|
∑n

t=1 |Xt/xn
ε| − E[|Xt/xn

ε|]| > δ)

nP(|X0| > xn)
= 0. (B.4.10)

• A(xbn) : Assume for non-negative continuous bounded function f : R → R, vanishing in a
neighborhood of the origin,

lim
n→+∞

|E[exp{−
∑n

t=1 f(x−1
bn
Xt)}]− E[exp{−

∑bn
t=1 f(x−1

bn
Xt)}]bn/bnc | = 0. (B.4.11)

Remark B.4.1. If the assumptions are required simultaneously, we assume the sequence (xn) ap-
pearing in it coincides. The sequence (xn) in AC and CS1 controls the extremes of the supremum
norm ‖X[0,n]‖∞ and of sum-type functionals, respectively. In this sense, it has a probabilistic inter-
pretation. Instead, we introduce the sequence (bn) in A(xbn) for statistical purposes.

The first condition has its roots in the work of Leadbetter [109] and Leadbetter et.al [110]. It
is linked to the maxima approach in Chapter A, and is typically used to justify the extremal index
heuristic from equation (A.2.7). The second and third conditions are vanishing-small-values and
mixing conditions, respectively, and a version of them was already introduced in [40]. These two are
tailored for studying sums of regularly varying innovations. We will use them in Chapter B to state
classical central limit theory and large deviation principles for heavy-tailed time series. We discuss
thoroughly these assumptions in Chapter 2 and verify them for classical models in Chapter 5.

B.5 Regularly varying time series

We recall next the definition of a stationary regularly varying time series following [10].

Definition B.5.1. Let (Xt) be a stationary time series taking values in (Rd, | · |). The time series
is regularly varying with (tail)-index α > 0 if for all h = 0, 1, . . . , there exists a random variable
(Θt)[−h,h] satisfying |Θ0| = 1 a.s. and

P(|X0| > tx,X[−h,h]/|X0| ∈ · | |X0| > x)
w−→ t−αP(Θ[−h,h] ∈ ·), x→ +∞. (B.5.12)

The time series (Θt) is a well defined object, following the Kolmogorov’s consistency theorem,
and we call it the spectral tail process of (Xt). The spectral tail process does not inherit the initial
stationarity property. Instead, we deduce the time-change formula: for any s, t ∈ Z, s ≤ 0 ≤ t and
for any measurable bounded function f : (Rd)t−s+1 → R,

E[f(Θs−i, . . . ,Θt−i)11(|Θ−i| 6= 0)] = E[|Θi|α f(Θs/|Θi|, . . . ,Θt/|Θi|)], (B.5.13)

The spectral tail process was introduced in [10] as a tool for modeling multivariate regular
variation of finite vectors of the time series; see Theorem 2.1 in [10]. We state this result below
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using `p-norms, p > 0, over time observations. In fact, for p < 1, ‖ · ‖p is not a norm but a modulus
as in [152], but by Proposition 3.1. in [152] this still entails regular variation.

Lemma B.5.2. Consider a regularly varying time series (Xt) of (tail)-index α > 0. Then, for any
p > 0, h ≥ 0, X[0,h] is regularly varying and satisfies

P(‖X[0,h]‖p > tx,X[0,h]/‖X[0,h]‖p ∈ ·)
P(|X0| > x)

w−→ c(p, h) t−αP(Q(p)(h) ∈ ·), x→ +∞ (B.5.14)

where c(p, h) is a positive constant and Q(p)(h) is the spectral measure of X[0,h] for the `p–norm,
i.e., ‖Q(p)(h)‖p = 1, a.s., and

P(Q(p)(h) ∈ ·) =
1

c(p, h)

h∑
k=0

E
[∥∥ Θ−k+[0,h]

‖Θ−t+[0,h]‖α

∥∥α
p
11(

Θ−k+[0,h]

‖Θ−k+[0,h]‖p
∈ ·)

]
, x→ +∞. (B.5.15)

Then, a stationary time series (Xt) satisfies Definition B.5.1 if and only if, for all h ≥ 0, X[0,h] is
multivariate regularly varying.

Lemma B.5.2 is proven in Lemma 7.1 in [26]. From Lemma B.5.2 we deduce

c(p, h) =
h∑
k=0

E[‖Θ−k+[0,h]/‖Θ−t+[0,h]‖α‖αp ]. (B.5.16)

Notice, if p = α, then c(α, h) = (h + 1), regardless of the extremal temporal dependence. Indeed,
the representation in (B.5.15) highlights the important role of the `α-norm.

In view of the time-change formula, the forward spectral tail process (Θ[0,+∞]) completely de-
scribes the spectral tail process; see [10]. In particular, c(p, h) =

∑h
k=0 E[‖Θ[0,k]‖αp − ‖Θ[1,k]‖αp ],

and further computations allow us to rewrite (B.5.15) in terms of the forward process. We keep in
mind the correspondance with joint multivariate regular variation, to keep track of the `p spectral
components: “Θ/‖Θ‖p” determining the distribution of Q(p)(h) by the change of norms relation. In
Section B.7 we will be interested in taking h→ +∞ in (B.5.15), for studying the extremal behavior
of blocks X[0,n] as n→ +∞.

Literature review

From a theoretical point of view, Definition B.5.1 admits further equivalent characterizations.
For example, Theorem 4.1. in [152] and Theorem 2.9. [48] both use a measure theory approach.
Moreover, the time-change formula (B.5.13) has proven to be a useful tool to characterize the limit
spectral tail measure. [96] shows a correspondence with measures verifying this property and the
max-stable processes. Motivated by Palm theory, the spectral tail measure defined by (YΘt), for
a (α)-Pareto random variable independent of (Θt), was also characterized in [139], highlighting the
importance of the time-change type properties.
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B.6 Central limit theory and clusters (of exceedances) in `∞

To study the overall clustering behavior, we want to let h → +∞ in (B.5.14) simultaneously
as x → +∞. This can be done under AC. Condition AC allow us to define short periods with
extramal behavior, that we call clusters, with finite expected length. Under AC, we will show in
Chapter 2 the relation below holds

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖∞ > xn)

w−→ P(YQ(∞) ∈ ·), n→ +∞. (B.6.17)

where Y is independent of Q(∞), P(Y > y) = y−α, for y > 1, ‖Q(∞)‖∞ = 1 a.s., and convergence
holds in (˜̀∞, d̃∞). Equation (B.6.17) gives a formal framework to define clusters. We call Q(∞) the
spectral cluster (of exceedances). The cluster limit at the right-hand side of (B.6.17) was implicitly
introduced in [40].

Using (B.6.17), and borrowing the ideas in [40], we can model extremal observations as in-
dependent clusters (of exceedances), under adequate mixing assumptions. Two things are crucial
about this approach: the distribution of the cluster (of exceedances) itself obtained from the limit
in (B.6.17), and the probability of hitting a cluster, i.e., P(‖X[0,n]‖∞ > xn). This modeling ap-
proach was used in [40] to extend the central limit theorem of regularly varying observations to a
time-dependent setting. We recall the main result in [40], that we formulate with the notation from
Theorem 3.6. in [9].

Theorem B.6.1. Consider (Xt) to be a regularly varying time series. Let (xn) be a sequence
satisfying P(‖X[0,n]‖∞ > xn) → 0, and AC, A(xbn); see Section B.4. Then, the following point
processes convergence holds

Nn =
∑n

t=1 εx−1
bn
Xt

d−→ N =
∑∞

i=1

∑
j∈Z εΓiQ

(∞)
tj

, n→ +∞, (B.6.18)

where (Q
(∞)
i ), i = 1, 2, . . . , is an i.i.d. sequence distributed as the spectral clusters (of exceedances);

see (B.6.17), and
∑∞

t=1 εΓt is a Poisson point process on (0,∞), with intensity measure θ|X|d(−y−α),
independent of the i.i.d. sequence (Q

(∞)
i ), i = 1, 2, . . . . The constant θ|X| is the extremal index of

(|Xt|) and satisfies

P(‖X[0,bn]‖∞ > xbn) ∼ θ|X| bn P(|X0| > xbn), n→ +∞. (B.6.19)

Finally, arguing as in [40], we can use a continuous mapping argument to deduce from equa-
tion (B.6.18) a central limit theorem for the mean corrected partial sums of regularly varying time
series. We recall this result in the next theorem, proven in Theorem 3.1. in [40].

Theorem B.6.2. Consider (Xt) to be a regularly varying time series. Assume the assumptions of
Theorem B.6.1 hold. Denoting (Q

(∞)
i ), for i = 1, 2, . . . an i.i.d. sequence distributed as the spectral

cluster (of exceedances), then

• If α ∈ (0, 1),
∑n

t=1Xt/xbn
d−→ ξ, as n→ +∞, and ξ =

∑∞
i=1

∑
j∈Z ΓiQ

(∞)
ij is stable distributed.
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• If α ∈ [1, 2), and CS1 holds too,
∑n

t=1Xt/xbn −E[Xt/xbn
1
]
d−→ ξ, as n→ +∞, and ξ is stable

distributed.

Actually, [40] uses a vanishing-small-values condition stronger than CS1 instead to obtain the
result. We proof in Chapter 4 that under AC, CS1, and A(xbn), the result of Theorem B.6.2 holds
true.

B.6.1 Literature Review

Cluster (of exceedances) are further reviewed in [10, 9, 41]. Central limit theory for time-
dependent random variables was originally investigated in [40], from a point process point of view,
but also in [97, 98] using telescopic sums arguments. Renormalized partial sums of regularly varying
time series have been re-considered more recently in [91, 5, 123]. Functional Donsker-type limit
theorem for re-scaled random walks are shown in [8, 9], using point process tools and a refinement
of Theorem B.6.1.

B.7 Large deviation principles and cluster processes in `p

We consider (Xt) to be a regularly varying time series with (tail)-index α > 0. We review
Lemma 3.6. in [25] together with and Proposition 3.1. in [26] to state the Proposition below. The
result appeals to the theory in [96].

Proposition B.7.1. Consider a stationary regularly varying time series (Xt) with (tail)-index
α > 0, and spectral tail process (Θt). Then, the following statements are equivalent:

i) ‖Θ‖α < +∞ a.s.

ii) limt→+∞ |Θt| = 0, a.s.,

Moreover, i), ii) hold under AC and in this case

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖∞ > xn)

w−→ c(∞)−1E
[‖Θ‖α∞
‖Θ‖αα

11(YΘ/‖Θ‖∞ ∈ ·)
]
, n→ +∞ (B.7.20)

where Y is independent of (Θt), P(Y > y) = y−α, for y > 1, and convergence holds in (˜̀∞, d̃∞).
Also, c(∞) = E[‖Θ‖α∞/‖Θ‖αα].

Remark B.7.2. Moreover, under the assumptions of Thoerem B.6.1, the extremal index θ|X| of
(|Xt|) is well defined; see (A.2.7), and c(∞) = E[‖Θ‖α∞/‖Θ‖αα] = θ|X|.

Our new approach consists in deriving new large deviation principles for blocks of consecutive
observations X[0,n], embedded in (˜̀p, d̃p). In this setting, we think the tail of X[0,n] as the blocks
distribution when its `p–norm its large. Then we consider a sequence (xn) such that

‖X[0,n]‖p = (
∑n

t=1 |Xt/xn|p)1/p P−→ 0, n→ +∞
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and model X[0,n]/xn on the event {‖X[0,n]‖p > xn}. To study `p–norms, notice |X1|p is also
regularly varying of index α/p, therefore the large deviations of `p–norms can be studied through
large deviations of sums with heavy-tailed innovations. We built on the approach of large deviations
of sums from [123, 121], extending Theorem B.2.4 to a time-dependent setting. We will work under
assumptions similar to those considered in [121], but tailored for the sums of p-powers setting.

To sum up, we show in Chapter 2 that assuming AC, a small-vanishing-conditions similar to
CS1 tailored for p–powers sums, and

c(p) := E[‖Θ‖αp /‖Θ‖αα] < +∞, (B.7.21)

then,

P(x−1
n X[0,n] ∈ · | ‖X[0,n]‖p > xn)

w−→ c(p)−1E
[‖Θ‖αp
‖Θ‖αα

11(YΘ/‖Θ‖p ∈ ·)
]
, (B.7.22)

w−→ P(YQ(p) ∈ ·), n→ +∞, (B.7.23)

where Y is independent of Q(p),P(Y > y) = y−α, for y > 1, ‖Q(p)‖p = 1 a.s., and convergence takes
place in (˜̀p, d̃p). Moreover,

P(‖X[0,n]‖p > xn) ∼ c(p)nP(|X0| > xbn), n→ +∞, (B.7.24)

The relation (B.7.22) allows us to define cluster processes Q(p) ∈ `p, satisfying ‖Q(p)‖p = 1 a.s.
This will be the main large deviations result we derive in Chapter 2.

Moreover, p 7→ c(p) is a non-decreasing function such that c(α) = 1 and c(∞) is the candidate
extremal index; see Remark B.7.2. These constants can also be obtained letting h→ +∞ in c(p, h)

defined in (B.5.16). We study the advantages of this approach for cluster inference in Chapters 2,
3, and for high quantiles inference in Chapter 4.

Finally, we argue that under AC, and motivated by the equivalence between i), ii), a good
candidate to capture the spectral cluster shape is Θ/‖Θ‖α which we can recover letting p = α in
(B.7.22).

B.7.1 Literature review

Pursuing the approach in Theorem B.2.4, we can study the tail of mean corrected partial sums
from (Xt), a regularly varying time series satisfying the tail balance condition (B.2.3). We study
regular variation, but the fundamental property is subexponenial distributions as defined in (B.2.4).
This broader setting was already treated in [124, 125, 33] for i.i.d. observations, and it is considered
in [118] for stationary subexponential observation. The case of regularly varying time series has
received more attention, and we restrict to it in our work. Mikosch and Wintenberger [123, 121]
give general and sufficient conditions on the dependence structure of (Xt) to state a similar result
as in Theorem B.2.4. We refer to Theorem 3.1. in [121] for a generalization of Nagaev’s theorem in
the stationary regularly varying setting. They study suitable regions Λn ⊆ (xn,+∞) such that if
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(Xt) is univariate regularly varying, then for some c ∈ [0,+∞)

lim
n→+∞

sup
x∈Λn

∣∣ P(
∑n

t=1Xt > x)

nP(|Xt| > x)
− c

∣∣ = 0. (B.7.25)

The extremal regions Λn here considered are analogous to the ones from Theorem B.2.4 for
many classical examples. For Markov chains, they prove a version of Theorem B.2.4 over regions
xn ≤ x ≤ cn instead of x ≥ xn, since verification can be is easier to handle using their drift-
condition DCp. Their result is general and builds on telescopic sum ideas already appearing in
[97, 98]. Concrete examples have also been studied independently. For example, the case of linear
processes was studied in [120], and stationary solutions to the stochastic recurrence equation Xt =

AtXt−1 +Bt, t ∈ Z, for an i.i.d. sequence (At, Bt) were studied in [90, 91, 106], for E[Aα] < 1 and
B regularly varying of tail index α > 0. For large deviation’s under the Kesten’s conditions we refer
to [24].

B.8 Cluster inference

Inferring the behavior of the cluster processes through summary statistics is what we call cluster
inference. Consider (Xt) to be a regularly varying time series taking values in (Rd, | · |). Cluster
inference has been typically addressed using the clusters (of exceedances) framework. In this setting,
we start by dividing the sample into mn = bn/bnc disjoint blocks as

X[1,bn],X[bn+1,2bn], . . . ,X[n−bn+1,n], (B.8.26)

then a large threshold is fixed and only blocks with at least one exceedance are kept leading to an
empirical sample of clusters (of exceedances). The goal is then to compute the average clustering
effect captured by these extremal block. This approach is formalized in [52] who assess the estimation
performance.

For example, interpretation of the extremal index through cluster features is the basis for in-
ference procedures from the early 1990s [160]. We can estimate the extremal index in this way
exploiting the relation (B.6.19). This idea motivated the so-called blocks estimators [88, 161], based
on counts of exceedances per cluster, and also the runs estimator [161, 65], based on interexceedances
lengths. Overall, the main goal of cluster inference is to capture the properties of extremal clusters.
The extremal index has been typically understood as a summary of the clustering of exceedances
effect.

We propose to use p-cluster processes with p <∞ to infer the extremal behavior of the sample.
We propose to keep the disjoint blocks in (B.8.26) whose `p–norm exceeds a large threshold instead.
Recall, cluster processes are related through Equation (B.7.22) by a change of norms functional.
In practice this means that in the case of cluster statistics, the same quantity can be estimated
in different ways letting functionals gp act on extremal `p-blocks for different p. This observation
opens the road for improving cluster inference. We pursue this road on Chapter (2). For example,
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we mentioned the extremal index can be recovered from (B.6.19), but note it can also be recovered
using extremal `α-blocks since θ|X| = c(∞) = E[‖Q(α)‖α∞] from equation B.7.21; see Remark B.7.2.
Investigation of cluster-based inference of the extremal index is discussed in detail in Chapter 3.

We can highlight two main advantages of addressing cluster inference via extremal `p-blocks
with p < +∞. First, as p decreases, the p–norm increases, and consequently, the probability of
hitting a cluster increases when c(p) < c(∞) as can be seen from Equation (B.7.24). Second, in our
framework, if p = α,

P(‖X[0,bn]‖α > xbn) ∼ bn P(|X0| > xbn), n→ +∞. (B.8.27)

where the relation in (B.8.27) holds regardless of the time dependence dynamics. This invariance
principle is advantageous since cluster inference no longer depends on c(p).

B.8.1 literature review

From a theoretical point of view, it is already challenging to define clusters (of exceedances);
see [65, 153, 154, 10, 9], and references there in. Concerning inference, the first theoretical setting
for cluster-based statistics was established in [52]. The authors presented a global framework for
showing asymptotic normality of cluster-based disjoint blocks estimators, and reviewed the example
of the extremal index. Asymptotic normality of the sliding blocks estimators was then studied in
[51]. Further, [28] showed, for cluster inference, the asymptotic variance of both disjoint and sliding
blocks estimators coincide. We refer to [108] for a modern treatment of cluster inference. Already
in [39, 50], the authors discuss how to improve cluster inference using the index of regular variation
of the time series. However, all the literature previously mentioned deals uniquely with clusters (of
exceedances).

B.9 Time series models

We investigate two examples of stationary regularly varying time series.

B.9.1 Linear model

Let (Zt) be an i.i.d. Rd-valued sequence, and independent of (Φj), which is a time series of
matrices in Rd×d. We consider the linear model (Xt), defined as the solution to the equation

Xt =
∑
t∈Z

ΦjZt−j , t ∈ Z. (B.9.28)

and the following holds

i) (Zt) is an i.i.d. sequence, regularly varying of index α > 0, centered if α > 1, and independent
of (Φj).

ii) E[
(
‖Φj‖(α−ε)∧2

)α+ε
] < +∞, for some ε > 0,
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iii) E[‖ΦjΘ
Z
0 ‖αα] > 0, where ΘZ

0 is independent of (Φj) and is distributed as the spectral measure
of Z1 and |ΘZ

0 | = 1 a.s..

Conditions i), ii), iii), guarantee, respectively, the heavy-tailedness,the existence of the stationary
linear model in (B.9.28), and of a non-null exponent measure by an application of the multivariate
Breiman’s lemma; see [6]. More precisely, recalling Theorem 15.1.2 in [108], we can state the
following result

Proposition B.9.1. Let (Xt) be the stationary solution in (B.9.28) satisfying i), ii), iii). Then, it
is regularly varying of index α > 0 with spectral tail (Θt) given by

Θt =
Φt+J

|ΦjΘ
Z
0 |

ΘZ
0 , t ∈ Z,

where (Φj) is independent of ΘZ
0 , and J is a random-shift variable taking values in Z, depending on

(ΘZ
0 , (Φj)), such that P

(
J = j | (ΘZ

0 , (Φj))
)

= |ΦjΘ
Z
0 |α/E[‖ΦjΘ

Z
0 ‖αα].

Classical examples defined by (B.9.28) are the m0-dependent processes, where |Φj | = 0 for all
except finitely many indexes in (B.9.28). We can also study autoregressive moving-average ARMA
processes as solutions to (B.9.28) (cf. [18]).

Example B.9.2. Let (Xt) be the AR(1) model, such that Xt = ϕXt−1 +Zt, t ∈ Z,|ϕ| < 1 and (Zt)

is an i.i.d. regularly varying sequence with (tail)-index α > 0, then

Θt =

ϕt ΘZ
0 , t ≥ −J,

0, t < −J.
(B.9.29)

and P(J = j |ΘZ
0 ) = |ϕj |α(1− |ϕ|α), for j ∈ Z. Moreover, it has extremal index θ|X| = (1− |ϕ|α).

B.9.2 Affine stochastic recurrence equation under Kesten’s assumptions

Let
(
(At,Bt)

)
be an i.i.d. sequence of non-negative random d×d matrices with generic element

A, and random vectors with generic element B, taking values in Rd. We consider (Xt) to be the
causal solution to the equation:

Xt = AtXt−1 + Bt, t ∈ Z, (B.9.30)

Kesten’s celebrated paper [103], shows sufficient conditions for the existence of a stationary solution
to (B.9.30), admitting the causal representation

Xt =
∑
i≥0

At−i+1 . . .AtBt−i, t ∈ Z, (B.9.31)

where the summand for i = 0 is Bt, for i = 1 is AtBt−1, and so on; see [6, 24] and references
therein. We quote below theorem 2.1. in [6] to explicit these conditions.
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Theorem B.9.3. (Existence of stationary solution) Assume E
[

log+ |A|op
]
< +∞, E

[
log+ |B|

]
<

+∞, and assume the Lyapunov exponent for the sequence (At) is negative. Then, the solution in
(B.9.31) converges a.s. and is the unique strictly stationary causal solution of (B.9.30).

Concerning heavy-tailedness, under the so-called Kesten’s conditions, (Xt) can admit a sta-
tionary regularly varying solution even when innovations ((At,Bt)), are light-tailed as first noticed
in [103]. Extremes are due to the products of arbitrary length in (B.9.31); see [13] for a review,
[74] for the Goldie and Kesten’s conditions for univariate innovations, and [6, 7] for a multivariate
treatment of Equation (B.9.30). Under these Kesten’s conditions, the index of regular variation of
(Xt), denoted α > 0, is the unique solution to

lim
n→+∞

n−1 logE
[
|An · · ·A1|αop

]
= 0. (B.9.32)

Equation (B.9.30) is key in econometric to model squared ARCH(p) and the volatility of
GARCH(p, q) processes. We review Theorem 2.4. with Corollary 2.7. in [6] to state exact con-
ditions for heavy-tailed solutions (Xt) from light-tailed innovations.

Theorem B.9.4. (Heavy-tailedness) Consider
(
(At,Bt)

)
to be an i.i.d. sequence of matrices A in

Rd×d with non-negative entries, and random vectors B in Rd-valued with non-negative entries such
that B 6= 0 a.s. Assume also the conditions below hold

1. For some κ > 0, E[|A|κop] < 1.

2. A has no zero rows a.s.

3. The set Γ in (B.9.33) generates a dense group on R.

Γ = {ln |an · · ·a1|op : n ≥ 1,an · · ·a1 > 0, an, . . . ,a1 are in the support of A’s law }.

(B.9.33)

4. There exists κ1 > 0, E
[
(mini=1,...,d

∑d
t=1Aij)

κ1
]
≥ dκ1/2 and E[|A|k1op ln+ |A|op] < +∞.

Then, there exists a unique solution α > 0 to (B.9.32), there exists a unique strictly stationary causal
solution (Xt) to (B.9.32). Moreover, if E[|B|α] < +∞ and either d = 1 or d > 1 and α > 0 is
not an even integer, then the finite-dimensional distributions of (Xt) are regularly varying of index
α > 0.

Moreover, under the assumptions of Theorem B.9.4, X0 admits a spectral measure Θ0 and its
forward spectral tail measure is given by

Θt = At · · ·A1Θ0, t ∈ N≥1.

where (At) is a sequence of i.i.d. random matrices with generic element A; see [6, 10].
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Example B.9.5. Let logAt
d
= Nt− 0.5 where Nt denotes a centered and reduced Gaussian random

variable. Then, the causal stationary solution (Xt), satisfying Xt = AXt−1, t ∈ Z, is regularly
varying with index α = 1 and E[(A)1−δ] < 1 for all δ > 0.
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Abstract

Assessing the time dependence of multivariate extremes
for heavy rainfall modeling

Nowadays, it is common in environmental sciences to use extreme value theory to assess the
risk of natural hazards. In hydrology, rainfall amounts reach high-intensity levels frequently, which
suggests modeling heavy rainfall from a heavy-tailed distribution. In this setting, risk management
is crucial for preventing the outrageous economic and societal consequences of flooding or land-
sliding. Furthermore, climate dynamics can produce extreme weather lasting numerous days over
the same region. However, even in the stationary setting, practitioners often disregard the temporal
memories of multivariate extremes. This thesis is motivated by the case study of fall heavy rainfall
amounts from a station’s network in France. Its main goal is twofold. First, it proposes a theoretical
framework for modeling time dependencies of multivariate stationary regularly varying time series.
Second, it presents new statistical methodologies to thoughtfully aggregate extreme recordings in
space and time.

To achieve this plan, we consider consecutive observations, or blocks, and analyze their extreme
behavior as their `p-norm reaches high levels, for p > 0. This consideration leads to the theory
of p-clusters, which model extremal `p-blocks. In the case p = ∞, we recover the classical cluster
(of exceedances). For p < ∞, we built on large deviations principles for heavy-tailed observations.
Then, we study in depth two setups where p-cluster theory appears valuable. First, we design disjoint
blocks estimators to infer statistics of p-clusters, e.g., the extremal index. Actually, p-clusters are
linked through a change of norms functional. This relationship opens the road for improving cluster
inference since we can now estimate the same quantity with different choices of p. We show cluster
inference based on p <∞ is advantageous compared to the classical p =∞ strategy in terms of bias.
Second, we propose the stable sums method for high return levels inference. This method enhances
marginal inference by aggregating extremes in space and time using the `α-norm, where α > 0 is the
(tail) index of the series. In simulation, it appears to be robust for dealing with temporal memories
and it is justified by the α-cluster theory.

Keywords1: Extreme value theory, regularly varying time series, large deviations, environmental
time series
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