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Heavy rainfall modeling
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Figure 1: Map of France
locating three different
climate regions for a case
study of fall daily rainfall
amounts from 1976 to 2015.

- Heavy rainfall modeling is needed
to design prevention plans against
disasters. For this reason, water cycle
research has a high environmental,
societal, and economic impact.

- Heavy rainfall modeling is critical for
risk evaluation of natural hazards like
flooding, debris flows, and landslides.

- Rainfall amounts reach high-intensity
levels frequently. This feature is mod-
eled by hydrologist with heavy-tailed
distributions.
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Extremal spatial dependencies
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Figure 2: Scatter plot of fall daily rainfall amounts from 1976 to 2015 for three
neighboring stations in the northwest of France.

|X𝑡 | = max
𝑗=1,2,3

𝑋𝑡 , 𝑗 .

In black, simultaneous exceedances of the 95-th empirical quantile of ( |X𝑡 |)𝑡=1,...,𝑛.
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Extremal temporal dependencies
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Figure 3: Empirical temporal extremogram χ̂𝑡 :

χ𝑡 = lim
𝑥→+∞

P( |X𝑡 | > 𝑥 | |X0 | > 𝑥) ,
of the 95-th order statistic of fall daily rainfall levels recorded at Brest from 1976 to
2015. As a baseline, the extremogram takes the dotted line pointed value at
independent time lags.
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Goals

1- To model accurately space and time dependencies, we present a theoretical
framework for studying multivariate stationary heavy-tailed time series.

2- For our application, it is common to record a big storm simultaneously at
close stations. We aim to propose new statistical methodologies to aggregate
thoughtfully the spatiotemporal extreme observations of the underlying event.
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Introduction



Notation

We consider

• (X𝑡 ) stationary time series in (R𝑑 , | · |).
• ∥(x𝑡 )∥ 𝑝 = (∑𝑡 ∈Z |x𝑡 |𝑝)1/𝑝 , for 𝑝 ∈ (0,∞), the supremum norm
∥(x𝑡 )∥∞ for 𝑝 = ∞.

∥(x𝑡 )∥∞ ≤ ∥(x𝑡 )∥ 𝑝 ≤ ∥(x𝑡 )∥𝑞 , 𝑝 > 𝑞.

• (ℓ𝑝 , 𝑑𝑝) sequential metric space.

• (x𝑡 )𝑡=𝑎,...,𝑏 = x[𝑎,𝑏] .
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Heavy-tailedness

Consider (X𝑡 ) satisfies RV𝛼 if for all 𝑏 ≥ 1, X[1,𝑏] ∈ R𝑑×𝑏 is multivariate
regularly varying, i.e.,

P(∥X[1,𝑏] ∥ 𝑝 > 𝑦 𝑥 ,
X[1,𝑏]

∥X[1,𝑏] ∥𝑝 ∈ · | ∥X[1,𝑏] ∥ 𝑝 > 𝑥)
𝑤−→ 𝑦−𝛼 P(Q(𝑝,𝑏) ∈ · ) , 𝑥 → +∞, 𝑦 > 1 ,

such that Q(𝑝,𝑏) ∈ R𝑑×𝑏, and ∥Q(𝑝,𝑏) ∥ 𝑝 = 1 a.s.
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Modeling perspectives

Let (X𝑡 ) be a stationary time series satisfying RV𝛼.

X[1,𝑛]/𝑥
= ( X[1,𝑏]/𝑥 , X[𝑏+1:2 𝑏]/𝑥 , . . . , X[𝑛−𝑏+1:𝑛]/𝑥 ),

𝑥 → +∞.

• Condition RV𝛼 models intra-blocks dependence.

• There might still be inter-blocks dependence!
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Modeling perspectives

Let (X𝑡 ) be a stationary time series satisfying RV𝛼.

X[1,𝑛]/𝑥𝑏𝑛
= ( X[1,𝑏𝑛 ]/𝑥𝑏𝑛 , X[𝑏𝑛+1:2 𝑏𝑛 ]/𝑥𝑏𝑛 , . . . , X[𝑛−𝑏𝑛+1:𝑛]/𝑥𝑏𝑛 ),

𝑛 → +∞.

• Disjoint blocks become asymptotically independent under mixing
conditions.

• Our goal is to model the extremal features of blocks X[1,𝑏𝑛 ] in (ℓ𝑝 , 𝑑𝑝)
such that ∥X[1,𝑏𝑛 ] ∥ 𝑝 > 𝑥𝑏𝑛 .

• We focus on large deviations of blocks, i.e.,

P(∑𝑏𝑛
𝑡=1 |X𝑡 |𝑝 > 𝑥

𝑝

𝑏𝑛
) = P(∥X[1,𝑏𝑛 ] ∥ 𝑝 > 𝑥𝑏𝑛 ) → 0.
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Literature review

1. Heavy-tailed time series
Blocks of maxima1 𝑝 = ∞
Extremal index2 𝜃 |X | ∈ (0, 1],

(P( |X1 | ≤ 𝑥𝑎𝑛))𝑛 → 𝐺 (𝑥), P(∥X[1,𝑛] ∥∞ ≤ 𝑥 𝑎𝑛) → (𝐺 (𝑥)) 𝜃|X| .

2. Sums of regularly varying increments 𝑝 < ∞ 3

Large deviations of sums
Central limit theory

(∑𝑛
𝑡=1X𝑡 − 𝑏𝑛)/𝑎𝑛

𝑑−→ 𝜉, 𝑛P( |X1 | > 𝑎𝑛) → 1.

1Davis & Hsing (1995), Basrak & Segers (2009), Basrak et al. (2018), Janßen (2019), Kulik &
Soulier (2020).
2Leadbetter (1983), Leadbetter et al. (1983), C.Y. Robert (2008).
3Davis & Hsing (1995), Jakubowski (1997), Bartiewicz et al. (2011), Basrak et al. (2012),

Mikosch & Wintenberger (2013), Basrak et al. (2018).
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Extremal ℓ𝑝-blocks



Large deviations of ℓ𝑝-blocks

Theorem 1
Assume (X𝑡 ) satisfies RV𝛼, and (𝑥𝑛) satisfies AC(𝑥𝑛), CS𝑝 (𝑥𝑛), and
P(∥X[1,𝑏𝑛 ] ∥ 𝑝 > 𝑥𝑏𝑛 ) → 0. Then,

P(∥X[1,𝑏𝑛 ] ∥ 𝑝 > 𝑥𝑏𝑛 )/(𝑏𝑛P( |X0 | > 𝑥𝑏𝑛 )) → 𝑐(𝑝),

𝜃 |X | = 𝑐(∞) ≤ 𝑐(𝑝) ≤ 𝑐(𝛼) = 1, for 𝑝 ∈ (𝛼,∞).

Moreover, if 𝑐(𝑝) < ∞

P(
𝑑−→ P(∈ ·),

such that Q(𝑝) ∈ (ℓ𝑝 , 𝑑𝑝), ∥Q(𝑝) ∥ 𝑝 = 1 a.s., and convergence holds for a
family of shift-invariant ℓ𝑝-continuity sets.
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Assumptions

Let (X𝑡 ) be a stationary time series in (R𝑑 , | · |) satisfying RV𝛼 such that

• AC(𝑥𝑛): for all 𝜖 > 0,

lim
𝑘→+∞

lim sup
𝑛→+∞

P(∥X[𝑘,𝑛] ∥∞ > 𝜖 𝑥𝑛 | |X0 | > 𝜖 𝑥𝑛) = 0.

• CS𝑝 (𝑥𝑛)4: for all 𝜖, 𝛿 > 0.

lim
𝜖 ↓0

lim sup
𝑛→+∞

P(∑𝑛
𝑡=1 |X𝑡 |𝑝1( |X𝑡 | ≤𝜖 𝑥𝑛) >𝛿 𝑥

𝑝
𝑛 )

𝑛P( |X0 |>𝑥𝑛) = 0.

This holds for all 𝑝 > 𝛼 under RV𝛼 by Karamata’s theory.

• RV𝛼 5: there exists (𝚯𝑡 ) such that |𝚯0 | = 1 a.s., and for all ℎ ≥ 0, 𝑦 > 1,

lim
𝑥→+∞

P( |X0 | > 𝑦 𝑥,
X[−ℎ,ℎ]
|X0 | ∈ · | |X0 | > 𝑥) = 𝑦−𝛼 P(𝚯[−ℎ,ℎ] ∈ ·).

4Davis & Hsing (1995), Jakubowski (1997), Bartkiewicz et al. (2011) for stable limit theorems.
5Basrak and Segers (2009)
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𝑝-cluster theory



𝑝-cluster theory

Proposition 1
Under AC the constant of large deviations satisfies

𝑐(𝑝) = E[∥𝚯∥𝛼𝑝/∥𝚯∥𝛼𝛼] .

Moreover, if 𝑐(𝑝) < ∞ and AC, CS𝑝 hold then the 𝑝-cluster process
admits the representation in (ℓ𝑝 , 𝑑𝑝).

P(Q(𝑝) ∈ ·) = 𝑐(𝑝)−1E
[
∥𝚯∥𝛼𝑝/∥𝚯∥𝛼𝛼 1

(
𝚯/∥𝚯∥ 𝑝 ∈ ·

) ]
.

Recall6 ∥𝚯∥𝛼 < ∞ as soon as |𝚯𝑡 | → 0 as 𝑡 → ∞, which holds under AC.

6Janßen (2019)
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𝛼-cluster theory

Corollary 1
If (X𝑡 ) satisfies RV𝛼, AC, CS𝛼, then 𝑐(𝛼) = 1 and Q(𝛼) = 𝚯/∥𝚯∥𝛼 a.s.

The normalizing constant 𝑐(𝑝) = E[∥𝚯/∥𝚯∥𝛼∥𝛼𝑝 ] depends on the temporal
dependence except when 𝑝 = 𝛼 and

P(∥X[1,𝑏𝑛 ] ∥𝛼 > 𝑥𝑏𝑛 ) ∼ 𝑏𝑛P( |X0 | > 𝑥𝑏𝑛 ).

The ℓ𝛼–blocks exceed high levels at a constant rate mindless of the time
dependencies. For this reason, inference based on ℓ𝛼-blocks is robust to
handle time-dependencies!
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Examples



i.i.d. model

• (X𝑡 ) i.i.d., X1 satisfies RV𝛼,

Q(𝛼)
𝑡 = 𝚯𝑡 = 11(𝑡 = 0)𝚯0.

Q
t(α

)

0

0

1
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Auto-regressive model

• (𝑋𝑡 ) a stationary AR(1), 𝑋𝑡 = 𝜑𝑋𝑡−1 + 𝑍𝑡 with 𝜑 ∈ (0, 1), and (𝑍𝑡 )
i.i.d. satisfying RV𝛼,

𝑄
(𝛼)
𝑡 = Θ𝑡/∥Θ∥𝛼 = 𝜑𝑡Θ𝑍

0 11(𝐽 + 𝑡 ≥ 0) (1 − 𝜑𝛼)1/𝛼,

𝐽 independent of Θ𝑍
0 , P(𝐽 = 𝑗) = (1 − 𝜑𝛼)𝜑 𝑗 𝛼, 𝑗 ≥ 0.

Q
t(α

)

0

0

1

15



Auto-regressive model

• (𝑋𝑡 ) a stationary AR(1), 𝑋𝑡 = 𝜑𝑋𝑡−1 + 𝑍𝑡 with 𝜑 ∈ (0, 1), and (𝑍𝑡 )
i.i.d. satisfying RV𝛼,

𝑄
(𝛼)
𝑡 = Θ𝑡/∥Θ∥𝛼 = 𝜑𝑡Θ𝑍

0 11(𝐽 + 𝑡 ≥ 0) (1 − 𝜑𝛼)1/𝛼,

𝐽 independent of Θ𝑍
0 , P(𝐽 = 𝑗) = (1 − 𝜑𝛼)𝜑 𝑗 𝛼, 𝑗 ≥ 0.

Q
t(α

)

0

0

1
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Causal solution to SRE under Kesten-Goldie assumptions

• (𝑋𝑡 ) causal solution to SRE, 𝑋𝑡 = 𝐴𝑡𝑋𝑡−1 + 𝐵𝑡 , ((𝐴𝑡 , 𝐵𝑡 )) positive
i.i.d. and ((𝐴, 𝐵)) satisfies Kesten-Goldie theory then

Θ𝑡 = 𝐴𝑡 · · · 𝐴1 , 𝑡 ≥ 0,

and Θ𝑡 → 0 a.s. since E[log(𝐴1)] < 0 holds.

Q
t(α

)

0

0

1

We take 𝐴𝑡 = 𝑒𝑁𝑡−1/2 such that (𝑁𝑡 ) is i.i.d. gaussian noise, and we follow Example 6.1.
in Janßen and Segers (2014) where Θ−𝑡 = 𝐴−𝑡 · · · 𝐴−1, for 𝑡 ≤ 0.
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Statistical methods



Inferential setting

2- Present new statistical methodologies to thoughtfully aggregate extreme
recordings in space and time.
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𝑝-cluster inference



Inference of p-cluster features

For inference purposes, let 𝑏𝑛 → ∞, 𝑚𝑛 = 𝑛/𝑏𝑛 → ∞.

X[1,𝑛] = ( X[1,𝑏𝑛 ]︸  ︷︷  ︸
B1,𝑏𝑛

, X[𝑏𝑛+1,2𝑏𝑛 ]︸       ︷︷       ︸
B2,𝑏𝑛

, . . . , X[𝑛−𝑏𝑛+1,𝑛]︸        ︷︷        ︸
B𝑚,𝑏𝑛

).

Aim:
Infer E[ 𝑓 (𝑌Q(𝑝) )] letting 𝑓 act on extremal ℓ𝑝-blocks: ∥B𝑡 ,𝑏𝑛 ∥ 𝑝 > 𝑥𝑏𝑛 , for
suitable cluster functionals 𝑓 : ℓ𝑝 → R, 𝑌 is (𝛼)-Pareto distributed and
independent of Q(𝑝) .
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Asymptotic normality

We propose to estimate the statistic 𝑓
Q
𝑝 = E[ 𝑓 (𝑌Q(𝑝) )] by

𝑓̂
Q
𝑝 :=

1
𝑘

𝑚∑︁
𝑡=1

𝑓
(
B𝑡/∥B𝑡 ∥ 𝑝, (𝑘+1)

)
11(∥B𝑡 ∥ 𝑝 > ∥B𝑡 ∥ 𝑝, (𝑘+1) ),

where ∥B∥ 𝑝, (1) ≥ · · · ≥ ∥B∥ 𝑝, (𝑚) .

Theorem7 3
Assume AC, CS𝑝 , and further mixing and bias conditions. There exists
𝑘 = 𝑘𝑛 → ∞, 𝑚/𝑘 → ∞, such that for suitable 𝑓 : ℓ𝑝 → R,

√
𝑘 ( 𝑓̂ Q

𝑝 − 𝑓
Q
𝑝 )

𝑑−→ N
(
0,Var( 𝑓 (𝑌Q(𝑝) ))

)
,

7Similar arguments as in Kulik, Soulier (2020) and Cissokho, Kulik (2021)
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Cluster inference

1. We extend the inference to 𝑝-clusters, 𝑝 ≤ ∞ selecting the blocks
whose ℓ𝑝-norm exceed the high threshold 𝑥: ∥B𝑡 ∥ 𝑝 > 𝑥𝑏𝑛 .

2. We promote the use of order statistics of p-norm blocks such that

∥B∥ 𝑝, (𝑘)/𝑥𝑏𝑛
P−→ 1.

where 𝑘𝑛 = 𝑘𝑛 (𝑝) =
⌈
𝑚𝑛P(∥B1,𝑏𝑛 ∥ 𝑝 > 𝑥𝑏𝑛 )

⌉
. In this way 𝑘𝑛 points to

the bias-variance trade-off in extreme value statistics.
3. The same quantity 𝑓

Q
𝑝 can be estimated using different pairs 𝑝′, 𝑓𝑝′ as

𝑓
Q
𝑝 = E[ 𝑓𝑝 (𝑌Q(𝑝) )] =

E[∥Q(𝑝′) ∥𝛼𝑝 𝑓𝑝 (𝑌Q(𝑝′)/∥Q(𝑝′) ∥ 𝑝)]
E[∥Q(𝑝′) ∥𝛼𝑝 ]

.

4. 𝑝-cluster theory allows us to compare inference procedures:
• Compare the suitable choices of 𝑘𝑛 = 𝑘𝑛 (𝑝) =

⌈
𝑚𝑛P(∥B1,𝑏𝑛 ∥𝑝 > 𝑥𝑏𝑛 )

⌉
.

• Compare the asymptotic variances Var( 𝑓𝑝 (𝑌Q(𝑝) )).
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Number of extreme blocks

Denote 𝑘𝑛 (𝑝) =
⌈
𝑚𝑛P(∥B1,𝑏𝑛 ∥ 𝑝 > 𝑥𝑏𝑛 )

⌉
the extremal ℓ𝑝-blocks, for a

sequence of levels (𝑥𝑛) satisfying AC, CS𝑝 .

For i.i.d. sequence 𝑘𝑛 = ⌈𝑛P( |X0 | > 𝑥𝑏𝑛 )⌉ ∼ 𝑘𝑛 (∞) ∼ 𝑘𝑛 (𝑝) ∼ 𝑘𝑛 (𝛼)
exceedances.
Heuristic on the number of extreme blocks:

𝑘𝑛 (𝑝) ∼ 𝑚𝑛P(∥B1∥ 𝑝 > 𝑥𝑏𝑛 ) ∼ 𝑐(𝑝)𝑛P( |X0 | > 𝑥𝑏𝑛 ) ∼ 𝑐(𝑝)𝑘𝑛 ,
𝑘𝑛 (𝛼) ∼ 𝑚𝑛P(∥B1∥𝛼 > 𝑥𝑏𝑛 ) ∼ 𝑛P( |X0 | > 𝑥𝑏𝑛 ) ∼ 𝑘𝑛 ,

thus 𝑘𝑛 (∞) ≲ 𝑘𝑛 (𝑝) for 𝑝 ∈ (𝛼,∞) since 𝑐(𝑝) ↓ 𝑐(∞).

Assuming also CS𝛼, 𝛼-cluster inference is justified. In this case the tuning
parameter 𝑘𝑛 does not dependent on the underlying time dependencies.
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Example

Cluster-based extremal index inference
For example, if 𝑓𝛼 : (x𝑡 ) ↦→ ∥(x𝑡 )∥𝛼∞/∥(x𝑡 )∥𝛼𝛼, then for 𝑝 = 𝛼,

𝜃 |X | = E[∥Q(𝛼) ∥𝛼∞] = 𝑐(∞).

=⇒ New estimator of the extremal index based on extremal ℓ𝛼-blocks.
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Examples

Letting 𝑓𝛼 : ℓ𝛼 → R : (x𝑡 ) ↦→ ∥x∥𝛼∞/∥x∥𝛼𝛼 act on extremal ℓ𝛼-blocks,

E
[
∥Q(𝛼) ∥𝛼∞

]
= 𝜃 |X | .

Letting 𝑓∞ : ℓ∞ → R : (x𝑡 ) ↦→
∑

𝑡 ∈Z 11( |x𝑡 | > 1) act on extremal ℓ∞-blocks,

(E[∑𝑡 ∈Z 11( |𝑌Q(∞) | > 1)])−1 = 𝜃 |X | .
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Numerical experiments



Estimators

𝜃̂ |X |,𝛼 = 1
𝑘

∑𝑚
𝑡=1

∥B𝑡 ∥𝛼∞
∥B𝑡 ∥𝛼𝛼 11(∥B𝑡 ∥𝛼 > ∥B∥𝛼, (𝑘+1) ), (1)

𝜃̂ |X |,∞ =
( 1
𝑘

∑𝑛
𝑡=111( |X𝑡 | > ∥B𝑡 ∥∞, (𝑘+1) )

)−1
. (2)

Consider a deterministic-threshold version of (2):

𝜃̃ |X |,∞ (𝑢) =
∑𝑚

𝑡=1 11(∥B𝑡 ∥∞ > 𝑢)∑𝑛
𝑡=1 11( |X𝑡 | > 𝑢) .

Then (2) is defined with 𝑢 = ∥B𝑡 ∥∞, (𝑘) . Instead, the so-called blocks
estimator (Hsing, 1993) is defined letting 𝑢 = |X(𝑘) |.
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Simulation setup

𝜃̂ |X |,𝛼 = 1
𝑘

∑𝑚
𝑡=1

∥B𝑡 ∥𝛼∞
∥B𝑡 ∥𝛼𝛼 11(∥B𝑡 ∥𝛼 > ∥B∥𝛼, (𝑘+1) ),

𝜃̂ |X |,∞ =
( 1
𝑘

∑𝑛
𝑡=111( |X𝑡 | > ∥B𝑡 ∥∞, (𝑘+1) )

)−1
.

• We simulate 1 000 AR(1) trajectories (𝑋𝑡 )𝑡=1,...,𝑛, 𝑋𝑡 = 𝜑𝑋𝑡−1 + 𝑍𝑡 , for
𝑛 = 3 000.

• We fix 𝑘 = 𝑘𝑛 = 𝑛/𝑏2
𝑛 and we use that

𝑘𝑛 (𝑝) ∼ 𝑚𝑛P(∥B1∥ 𝑝 > 𝑥𝑏) ∼ 𝑛 𝑐(𝑝)P( |X0 | > 𝑥𝑏) = 𝑜(𝑛/𝑏𝛼/𝑝∨1).
• In this setting,

Var( 𝑓𝛼 (𝑌𝑄 (𝛼) )) = Var( 𝑓∞ (𝑌𝑄 (∞) )) = 0.

• The choice 𝑝 = 𝛼 is natural but requires the estimation of 𝛼. We use the
estimator from de Haan et al. (2016).
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Simulation results
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Figure 4: Boxplot of estimates 𝜃̂ |X |,𝛼 (blue) and 𝜃̂ |X |,∞ (white), from observations
(X𝑡 )𝑡=1,...,𝑛 from a causal AR(1) model with student(𝛼) noise, 𝛼 = 1.3 and 𝜑 = 0.8
(left), 𝜑 = 0.5 (right), such that 𝑛 = 3 000.
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Figure 5: Boxplot of estimates 𝜃̂ |X |,𝛼 (blue) and 𝜃̂ |X |,∞ (white). In the first row
𝑛 = 8 000, second 𝑛 = 4 000, third 𝑛 = 2 000. 28



Case study
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Conclusions

1. We presented large deviations of blocks in ℓ𝑝 , i.e. the limit X[1,𝑏𝑛 ]/𝑥𝑏𝑛 ,
such that ∥X[1,𝑏𝑛 ]/𝑥𝑏𝑛 ∥ 𝑝

P−→ 0.

2. We developed the theory of 𝑝-clusters.

3. We studied 𝑝-cluster inference and compared inference procedures
based on 𝑝 = 𝛼 and 𝑝 = ∞.

4. We showed that the new inference methodologies using ℓ𝑝-blocks can
be studied using 𝑝-cluster theory.

5. Inference based on extremal ℓ𝛼-blocks is robust to handle time
dependencies but requires estimation of the (tail) inference 𝛼.

6. In the models we reviewed, the distribution of 𝛼-cluster is known. This
could be used to propose new estimators of 𝛼-cluster statistics.
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Marginal tails inference



Marginal Inference

By Corollary 1,

P(𝑋0, 𝑗 > 𝑥𝑏𝑛 ) ∼ 𝑚( 𝑗) (𝑏𝑛)−1P(∥B1,𝑏𝑛 ∥𝛼 > 𝑥𝑏𝑛 ), (3)

where 𝑚( 𝑗) = E[(Θ0, 𝑗 )𝛼+ ] ∈ (0, 1] traces the extremal spatial dependencies

,
and the distribution function

𝑥 ↦→ P( ∥B1,𝑏𝑛 ∥𝛼𝛼︸     ︷︷     ︸∑𝑏𝑛
𝑡=1 |X𝑡 |𝛼

≤ 𝑥 ),

can be modeled from a stable distribution fitted to

∥B1,𝑏𝑛 ∥𝛼𝛼 , ∥B2,𝑏𝑛 ∥𝛼𝛼 , . . . , ∥B𝑚𝑛 ,𝑏𝑛 ∥𝛼𝛼 .

Input: 𝛼̂𝑛, 𝑚𝑛 ( 𝑗),X1, . . . ,X𝑛.

Step 1: Find 𝑏 such that (∥B𝑡 ,𝑏∥𝛼
𝑛

𝛼𝑛 )𝑡=1,...,𝑚 is nicely modeled by a stable
distribution with unit stable parameter.
Step 2: Extrapolate high quantiles from stable distribution based on (3).
Step 3: Parametric bootstrap to obtain confidence intervals.
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Marginal Inference

By Corollary 1,
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𝑥 ↦→ P( ∥B1,𝑏𝑛 ∥𝛼𝛼︸     ︷︷     ︸∑𝑏𝑛
𝑡=1 |X𝑡 |𝛼

≤ 𝑥 ),

can be modeled from a stable distribution fitted to

∥B1,𝑏𝑛 ∥𝛼𝛼 , ∥B2,𝑏𝑛 ∥𝛼𝛼 , . . . , ∥B𝑚𝑛 ,𝑏𝑛 ∥𝛼𝛼 .

Input: 𝛼̂𝑛, 𝑚𝑛 ( 𝑗),X1, . . . ,X𝑛.

Step 1: Find 𝑏 such that (∥B𝑡 ,𝑏∥𝛼
𝑛

𝛼𝑛 )𝑡=1,...,𝑚 is nicely modeled by a stable
distribution with unit stable parameter.
Step 2: Extrapolate high quantiles from stable distribution based on (3).
Step 3: Parametric bootstrap to obtain confidence intervals.
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Marginal Inference

By Corollary 1,
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𝑡=1 |X𝑡 |𝛼

≤ 𝑥 ),

can be modeled from a stable distribution fitted to

∥B1,𝑏𝑛 ∥𝛼𝛼 , ∥B2,𝑏𝑛 ∥𝛼𝛼 , . . . , ∥B𝑚𝑛 ,𝑏𝑛 ∥𝛼𝛼 .

Input: 𝛼̂𝑛, 𝑚𝑛 ( 𝑗),X1, . . . ,X𝑛.

Step 1: Find 𝑏 such that (∥B𝑡 ,𝑏∥𝛼
𝑛

𝛼𝑛 )𝑡=1,...,𝑚 is nicely modeled by a stable
distribution with unit stable parameter.
Step 2: Extrapolate high quantiles from stable distribution based on (3).
Step 3: Parametric bootstrap to obtain confidence intervals.
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Numerical experiments

We run 1 000 trajectories with 𝑛 = 4 000 from four models with (tail) index 4.
We use the estimator 𝛼̂𝑛 from de Haan et al. (2016).

Coverage probabilities for the 99.98𝑡ℎ estimated quantile
Burr Fréchet Armax(0.7) 8 Armax(0.8)

block maxima .89 .93 .93 .91
peaks o. threshold .85 .87 .79 .72

stable 𝑏 = 32 .94 (.51) .96 (.53) .90 (.66) .89 (.55)

stable 𝑏 = 64 .95 (.85) .99 (.90) .96 (.89) .93 (.85)

stable 𝑏 = 128 .98 (.94) .99 (.91) .97 (.94) .95 (.92)

8The Armax(𝜆) model satisfies 𝑋𝑡 = max{𝜆 𝑋𝑡−1, (1 − 𝜆𝛼)1/𝛼 𝑍𝑡 }, 𝑡 ∈ Z, where (𝑍𝑡 ) are
i.i.d. Fréchet distributed with (tail) index 𝛼 > 0.
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